Towards an Unbounded Implicit Arithmetic for the Polynomial Hierarchy

Patrick Baillot and Anupam Das

CNRS / ENS Lyon

April 22, 2017

Introduction

2 cousin approaches to logical characterization of complexity classes:

Bounded arithmetic (86 –)	Implicit computational complexity (91 –) (ICC)
	function algebras types/proofs-as-programs arithmetics / logics
large variety of complexity classes	resource-free characterizations of complexity classes (e.g. ramification)
corresp. with proof-complexity	extensions to programming languages

Introduction

" f is provably total in system XXX" \Leftrightarrow $f \in$ complexity class YYY

Bounded arithmetic	Implicit computational complexity
Buss (S_1) : $\forall x, \exists y \leq t. \ A_f(x, y)$	Leivant (intrinsic theories): $\forall x. N_1(x) \rightarrow N_0(f(x))$
FP, FPH	FP

A current limitation of ICC logics

- fewer complexity classes characterized by ICC logics than by bounded arithmetic
- in particular, not so satisfactory for non-deterministic classes
 e.g. NP, PH (polynomial hierarchy) . . .

Recap: the polynomial hierarchy

• to be done: definition . . .

Our goal

design an unbounded arithmetic for characterizing FPH expected benefits:

- bridge bounded arithmetic and ICC logics
- enlarge the toolbox ICC logics of , by exploring the power of quantification

Methodology

We want to use:

ramification

•