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In this work-in-progress we intend to extend the scope of linear logic to first-order
theories, i.e. with nonlogical axioms and inference rules, in particular for fragments
of arithmetic. The aim is to use the restrictions on contraction in substructural logics
to model resource usage in an interpretation of first-order proofs, e.g. via realisabil-
ity/Dialectica interpretations or via proof-theoretic means, such as the witness function
method. At the same time, we would like to draw parallels between substructural
approaches to implicit computational complexity and bounded arithmetic, by linking
structural restrictions in the former to quantifier restrictions in the latter.

A motivating example

A classic distinction in weak theories of arithmetic is between usual induction,
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and a ‘divide-and-conquer’ variant, known as polynomial induction:
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The formula A(a) is called the induction formula. A proof of their equivalence pro-
ceeds by proving IND from PIND using a metalogical argument as follows. Suppose
we have,

A(a) > A(a+1) 3)

We proceed by PIND on the following formula:
Vo < (t—a).(A(z) = Az + a)) 4)

The base case, when a = 0, is trivial. For the inductive step, suppose b < t — 2a.
Then, by the inductive hypothesis (4) we have A(b) — A(b + a). However, since
also b + a < t — a, we have from (4) again that A(b + a) — A(b + 2a), yielding
A(b) — A(b+ 2a) as required. For the 2a + 1 step we simply apply (3) at this point.
Consequently, by PIND, we obtain:

Vo < (t—s).(A(z) = Az +1))

for any term s, whence we obtain A(0) — A(¢) by setting s := ¢, as required.
Therefore, in order to distinguish IND from PIND, we must control some aspect
of the reasoning in this argument. There are (at least) three possibilities:



1. The quantifier complexity of the induction formula has increased, by an extra V.
2. The type level of the induction formula has increased, by an extra — symbol.

3. The number of calls to the inductive hypothesis has increased: we must apply
@ atxr=bandz =b+ a.

The first approach, arguably the most well studied, is that taken in bounded arith-
metic, e.g. in Buss’ S4-T4 hierarchy [Bus86]. Quantifier alternation in such settings is
closely related to hierarchies of complexity classes, and questions of logical strength
are associated with separation hypotheses.

The second approach cannot be realised in classical logic, due to the De Morgan
laws, and so is naturally set in intuitionistic logic. This corresponds to recursion at
higher type levels and, again, induces hierarchies of associated complexity classes,
depending on the setting, e.g. [Lei02].

The third approach is only realisable in a resource conscious logic, such as linear
logic: we may reject the argument by restricting the use of contraction on induction
formulae. This is the least developed approach of the three, and this is what we are
concerned with in this work.

1 Previous work: first-order theories in linear logic

The study of first-order theories such as arithmetic in linear logic is still somewhat un-
developed, in contrast to certain related substructural logics, e.g. relevant logic. Ex-
isting works such as [Gri81] and [Ter04] explore fragments of set theory in linear
logic, but we seek to build upon [BH02] due to its thematic relationship to bounded
arithmetic. In that work a fragment A} of Peano Arithmetic is presented, based on a
substructural modal logic, with the restriction that induction formulae must be free of
the modality []. Using a realisability interpretation, via an intuitionistic variant of the
theory, Bellantoni and Hofmann are able to show the following witnessing theorem:

Theorem 1 ([BHO02]). The provably total functions of A} are precisely the functions
computable in polynomial time.

This realisability proof is complementary to that for the analogous result for Buss’
SQI, a textbook theory in bounded arithmetic, which relies on the witness function
method [Bus86]. To this end, researchers in bounded arithmetic rely crucially on a
‘free-cut free’ form of proofs in theories of arithmetic.

Theorem 2 ([Tak75]). An arithmetic proof can be transformed into one whose formu-
lae are all subformulae of the conclusion or an induction formula.

While both methods have their advantages, one drawback of the former is that it
does not easily admit finer analysis of logical fragments due to the double-negation
translation into intuitionistic logic. For example, this proof method does not allow us
to obtain the tight association between the S% hierarchy and the polynomial hierarchy
presented in [Bus86], via the witness function method.

The notion of free-cut elimination for linear logic is only partially developed, e.g.
in [LMSS92] and more recently [BMO07], with a general result lacking.'

'While it is not be very surprising that some analogous results holds, the question is rather how general
such a result can be.



2  Work in progress

Free-cut elimination for FO theories in linear logic
We consider arbitrary nonlogical rules, which we can assume are written as follows:
{I1,%; F11;, 7A},
T, X FIL7A

®)

We call IT" and ?A the side formulae, 3 and II the principal formulae.

Theorem 3. Every linear logic proof can be transformed to one where each cut formula
is principal for an instance of a nonlogical rule.

Proof sketch. Mostly adapting known methods, we proceed via a local rewriting pro-
cedure. Termination arguments remain correct even in presence of nonlogical steps,
due to locality, only the normal forms change. The ultimate normal forms obtained are
precisely the free-cut free proofs. O

Corollary 4 (Arithmetic). The subformula property of Thm. 2 holds for arithmetic in
linear logic when induction side formulae are appropriately modalised:

T, A(a) F A(a+1),7A
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This result holds for PIND as well, and this normal form opens the door to ‘direct’
interpretations of proofs, as we will now discuss.

The witness function method for arithmetic in linear logic

At the heart of the witness function method is the simple definability of a predicate in
a given theory which decides if a given word (or functional) witnesses the truth of a
given formula. The method then proceeds by showing one can build up witnesses by
structural induction on a free-cut free proof.

Proposition 5. There is a notion of witness predicate that is ‘correct’ for arbitrary
arithmetic formulae in linear logic.

The idea behind this is that we resort to functions of type level 1 to express wit-
nesses of arbitrary formulae, rather than words (functions of type level 0), morally
using Skolemisation to deal with universal quantifiers. Therefore, to adapt the method
to theories in linear logic without quantifier restrictions, we must work at one level
higher for the entire argument, i.e. of level 2, equivalently polynomial-time functions
over streams [KC96].

Conjecture 6. For induction formulae free of exponentials !,?, we can show that
the provably total functions are polynomial-time computable by the witness function
method, equipped with an appropriate characterisation of polytime functions over
streams.

The current problem with proving this is, as usual, the V-right rule in the classical
setting.> However we believe that this can be avoided, thus preserving the structure of
proofs, by employing an induction on the quantifier complexity of induction formulae,
thus remaining at bounded type level.

2This is one of the reasons why Dialectica and realisability interpretations first employ the double nega-
tion translation.



Extending Al

Finally, we would like to apply the previous research directions to extend the work
done of [BHO02]. One result crucial to this work is the observation that their logic can
be embedded into linear logic.

Theorem 7. The underlying logic of A} is equivalent to multiplicative exponential
affine logic.?

The proof is fairly simple, induced at the level of the connectives and scaled to
proofs by usual Hilbert-Gentzen-Frege style metalogical reasoning.

There are two main directions in which we are currently extending the result of
[BHO2]. First, we are exploring extensions of the logic by second-order quantification
(which admits an encoding of the additives), or the light and soft exponentials from
[Gir98] and [Laf04] respectively. For this direction we believe it is simplest to adapt
the existing proof via realisability, but appealing to a light or soft logic to type the
functionals obtained by the interpretation.

Secondly, we would like to use a proof of Thm. 1 via a direct interpretation, cf.
Conj. 6, to obtain finer characterisations of complexity classes, due to the better preser-
vation of formula and proof structure. In particular we would like to match the struc-
ture of formulae with hierarchies in computational complexity, and in this way examine
their relationships with associated hierarchies of theories in bounded arithmetic.
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