Statistiques
| Révision :

root / CharacterizingPH / soundness.tex @ 186

Historique | Voir | Annoter | Télécharger (5,4 ko)

1
\documentclass{amsart}
2
\usepackage{amsthm}
3

    
4

    
5
\input{macros}
6

    
7
\begin{document}
8
	\section{Logical operations as programs}
9
	
10
	Any polynomial-time predicate can be conservatively added to BC with only safe inputs.
11
	Thus all logical connectives $\neg, \vee, \wedge$ and equality testing $=$ can be implemented as programs with only safe arguments. 
12
	
13
	\section{Soundness}
14
	We show that any provably convergent function of $I\Sigma^{N}_i$ is in $\Box_i$.
15
	
16
	\subsection{Interpreting $\Pi_{i-1}$ formulae as programs}
17
	Each $\Pi_{i-1}$ formula is directly interpreted, as in usual WFM, as a descriptive program evaluating whether it is true or not.
18
	We define it by induction on formula structure:
19

    
20

    
21
	\[
22
	\begin{array}{rcl}
23
	\wit{s,t}{s=t} (;x) & \dfn & =(;s,t) \\
24
	\smallskip
25
	\wit{t}{N(t)} (;x) & \dfn & =(;x,t)\\
26
	\smallskip
27
	\wit{t}{\Box N(t)} (u;) & \dfn & =(;u,t) \\
28
	\smallskip
29
	\wit{\vec t}{A\star B} (;x) & \dfn & \star (; \wit{\vec t}{A} (;x), \wit{\vec t}{B} (;x) ) \\
30
	\smallskip
31
	\wit{\vec t}{\exists x^N . A(x)} (;x) & \dfn & \begin{cases}
32
	1 & \exists a^N . \wit{a , \vec t}{A(a)} (;x) = 1 \\
33
	0 & \text{otherwise} 
34
	\end{cases} \\
35
	\smallskip
36
	\wit{\vec t}{\forall x^N . A(x)} (;x) & \dfn & 
37
	\begin{cases}
38
	0 & \exists a^N. \wit{a, \vec t}{ A(a)} (;x) = 0 \\
39
	1 & \text{otherwise}
40
	\end{cases}
41
	\end{array}
42
	\]
43
	
44
	(Notice that, by free-cut elimination, $\Box$-formulae are always of the form $\Box N(t)$, so any composite formulae can be assumed to have only safe arguments. 
45
	We can also assume that they always occur on the LHS of a sequent.)
46
	\subsection{Witness predicate for $\Sigma_i$ formulae}
47
%	We give the witness predicate for $\Sigma_i$ formulae assumed to be in prenex form.
48
	When $A,B$ are $\Sigma_{i}$ we define:
49
		\[
50
		\begin{array}{rcl}
51
		\wit{\vec t}{A\star B} (;\vec x , \vec y) & \dfn & \star (; \wit{\vec t}{A} (;\vec x), \wit{\vec t}{B} (;\vec y) ) \\
52
		\smallskip
53
		\wit{\vec t}{\exists  x . A( x)} (; x, \vec x) & \dfn & \wit{a, \vec t}{A( a)}(;\vec x) \left[ x^N /  a\right]
54
		\end{array}
55
		\]
56
	(Notice that this covers all $\Sigma_i$ formulae).
57
	
58
	\subsection{Witness extraction invariant}
59
%	We will show the following result:
60
	
61
	We will show that, if there is a proof $\pi$ of $\Gamma \seqar \Delta$, then there are programs $\vec f$ such that:
62
	\[
63
	\wit{\vec t}{\bigwedge \Gamma} (; \vec x)
64
	\quad \implies \quad
65
	\wit{\vec t}{\bigvee \Delta } (; \vec f (; \vec x) )
66
	\]
67
	
68
	\subsection{Defining the programs}
69
	We define the extracted programs inductively on a free-cut free proof.
70
	
71
	\begin{itemize}
72
	\item $\forall$ right case. Auxiliary formula $A$ must be $\Pi_{i-1}$ by free-cut elimination.
73
		\[
74
		\dfrac{N(a), \Gamma \seqar \Delta , A(a)}{\Gamma \seqar \Delta , \forall x^N. A(x)}
75
		\]
76
		By the inductive hypothesis we have functions $\vec f^\Delta , \vec f^A$ such that:
77
		\[
78
		\wit{a , \vec t}{N(a)} (;x)
79
		\wedge 
80
		\wit{a , \vec t}{\bigwedge \Gamma} (\vec u; \vec x)
81
		\implies
82
		\wit{a , \vec t}{\bigvee \Delta}{ (; \vec f^\Delta (\vec u ; x , \vec x))}
83
		\vee
84
		\wit{a , \vec t}{ A} (; \vec f^A (\vec u ; x , \vec x) )
85
		\]
86
		Since $A$ is $\Pi_{i-1}$ we can forget about $\vec f^A$.
87
		We define $\vec g^\Delta , \vec g^{\forall x^N . A}$ as follows:
88
		\[
89
		\begin{array}{rcl}
90
		\vec g^{\forall x^N . A} (\vec u ; \vec x) & \dfn & 0 \\
91
		\vec g^\Delta (\vec u ; \vec x) & \dfn & 
92
		\vec f^\Delta ( \vec u ;  \mu a^N . ( \wit{a , \vec t}{A} (;0) = 0 ) , \vec x )
93
		\end{array}
94
		\]
95
		(Notice that the minimisation program has the same complexity as the witness predicate for $\forall x^N . A(x)$, i.e.\ $\Pi_{i-1}$.)
96
	\item Contraction right case. Need to test the witness predicate using conditional. (No need for $\mu$s.).
97
	Given such a step,
98
	\[
99
	\dfrac{\Gamma \seqar \Delta , A , A}{\Gamma \seqar \Delta , A}
100
	\]
101
	by the inductive hypothesis we have programs $\vec f^\Delta , \vec f^0 , \vec f^1$ such that:
102
	\[
103
	\wit{\vec t}{\bigwedge \Gamma} (\vec u ; \vec x)
104
	\implies
105
	\wit{\vec t}{\bigvee \Delta} (; \vec f^\Delta (\vec u ; \vec x) )
106
	\vee
107
	\wit{\vec t}{A} (;\vec f^0 (\vec u ; \vec x))
108
	\vee
109
	\wit{\vec t}{A} (; \vec f^1 (\vec u ; \vec x))
110
	\]
111
	Construct the programs $\vec g^\Delta, \vec g^A$ as follows:
112
	\[
113
	\begin{array}{rcl}
114
	\vec g^\Delta (\vec u ; \vec x) & \dfn & \vec f^\Delta (\vec u ; \vec x) \\
115
	\vec g^A (\vec u; \vec x) & \dfn & 
116
	\begin{cases}
117
	\vec f^0 (\vec u ; \vec x) & \wit{\vec t}{A} (;\vec f^0(\vec u ; \vec x) =1 ) \\
118
	\vec f^1 (\vec u ; \vec x) & \text{otherwise}
119
	\end{cases} 
120
	\end{array}
121
	\]
122
	\item Induction. NB: Can assume no side-formulae on the right!!
123
	\[
124
	\dfrac{\Box N(a), \Gamma, A(a) \seqar A(s_i a)}{\Box N(s), \Gamma , A(0) \seqar A(s)}
125
	\]
126
	We need to keep track of all the terms in the witness predicate.
127
	\[
128
%	\begin{array}{rl}
129
%	&\wit{a, t(a), t(s_i a), \vec t}{LHS} (u , \vec u ; \vec x , \vec y)
130
%	\\
131
%	\implies & 
132
%	\wit{a , t(a), t(s_i a), \vec t}{A(s_i a)} (; \vec f^A (u , \vec u ; \vec x , \vec y)  )
133
%	\vee
134
%	\wit{a , t(a), t(s_i a), \vec t}{\bigvee \Delta} (; \vec f^\Delta (u , \vec u ; \vec x , \vec y)  )
135
%	\end{array}
136
\wit{a, t(a), t(s_i a), \vec t}{LHS} (u , \vec u ; \vec x , \vec y)
137
\implies 
138
\wit{a , t(a), t(s_i a), \vec t}{A(s_i a)} (; \vec f^i (u , \vec u ; \vec x , \vec y)  )
139
	\]
140
	Define $\vec g$ by safe recursion as follows:
141
	\[
142
	\begin{array}{rcl}
143
	\vec g (0 , \vec u ; \vec x , \vec y) & \dfn & \vec y \\
144
	\vec g (s_i u, \vec u ; \vec x , \vec y) & \dfn & \vec f^i ( u, \vec u; \vec x, \vec g (u, \vec u ; \vec x , \vec y) )
145
	\end{array}
146
	\]
147
	\end{itemize}
148
	\subsection{Proof of correctness}
149
	
150
\end{document}