root / CSL16 / appendix.tex @ 186
Historique | Voir | Annoter | Télécharger (14,99 ko)
1 |
\appendix |
---|---|
2 |
|
3 |
\begin{center} \large APPENDIX \end{center} |
4 |
|
5 |
|
6 |
\input{appendix-preliminaries} |
7 |
\input{appendix-free-cut-elim} |
8 |
\input{appendix-arithmetic} |
9 |
\input{appendix-bc} |
10 |
\input{appendix-bc-convergence} |
11 |
\input{appendix-wfm} |
12 |
|
13 |
|
14 |
|
15 |
% |
16 |
%\section{Some cut-elimination cases} |
17 |
%We work in a one-sided calculus for full linear logic. When working in the affine setting we simply drop the condition that weakened formulae are $?$-ed. |
18 |
% |
19 |
%As well as all usual rules, we have the induction rule: |
20 |
%\[ |
21 |
%\vlinf{\indr}{(x \notin FV (\Gamma) )}{? \Gamma, A^\perp (0) , A(t)}{? \Gamma , A^\perp (x) , A(s x) } |
22 |
%\] |
23 |
% |
24 |
%We give all the various cut-reduction cases in the following section but first we give a simple cut-elimination argument. |
25 |
% |
26 |
%\subsection{A basic (free-)cut elimination argument} |
27 |
%We give an argument that easily scales to free-cut elimination, i.e.\ in the presence of non-logical rules. |
28 |
% |
29 |
%\newcommand{\anarrow}[2]{\overset{#1}{\underset{#2}{\longrightarrow}}} |
30 |
%\newcommand{\cutredlin}{\mathit{ma}} |
31 |
%\newcommand{\cutredexp}{exp} |
32 |
% |
33 |
%\begin{definition} |
34 |
% Let $\anarrow{}{\cutredexp}$ denote the reduction steps concerning exponential cuts, and $\anarrow{}{\cutredlin}$ be the set of cut-reduction steps concerning multiplicative and additive cuts. |
35 |
%\end{definition} |
36 |
% |
37 |
%\newcommand{\rk}{\mathsf{rk}} |
38 |
% \renewcommand{\deg}{\mathsf{deg}} |
39 |
%\begin{definition} |
40 |
% [Measures] |
41 |
% For a $\anarrow{}{\cutredlin}$-redex $r$, let its \emph{degree} $\deg( r)$ be the number of logical connectives or quantifiers in its cut-formula. For a proof $\pi$, its \emph{degree} $\deg( \pi)$ is the multiset of the degree of its redexes. |
42 |
%\end{definition} |
43 |
% |
44 |
%\begin{proposition} |
45 |
%If $\pi$ is not $\anarrow{}{\cutredlin}$-normal then there is a derivation $L:\pi \anarrow{*}{\cutredlin} \pi'$ such that $\deg(\pi')< \deg(\pi)$. |
46 |
%\end{proposition} |
47 |
%\begin{proof} |
48 |
% First let us show the statement in the special case that $\pi$ contains precisely one $\cut$-inference as its final step, by induction on $|\pi|$. Each commutative $\anarrow{}{\cutredlin}$-step results in us being able to apply the inductive hypothesis to smaller proofs,- in the case of $\vlan $ two smaller proofs. Each key $\anarrow{}{\cutredlin}$-case strictly reduces the degree of the proof. Consequently we can eventually transform $\pi$ to a proof $\pi'$ which has possibly several cuts of smaller degree, as required. |
49 |
% |
50 |
% Now to the general case, we simply apply the above procedure to the subproof above a topmost cut in $\pi$. |
51 |
%\end{proof} |
52 |
%\begin{corollary} |
53 |
% $\anarrow{}{\cutredlin}$ is weakly normalising. |
54 |
%\end{corollary} |
55 |
% |
56 |
% |
57 |
%\newcommand{\cntdown}{\mathit{cn}} |
58 |
%\begin{definition} |
59 |
% [Lazy contraction] |
60 |
% Let $\anarrow{}{\cntdown}$ comprise of the following reduction steps: |
61 |
% \begin{enumerate} |
62 |
% \item The commuting steps, |
63 |
% \[ |
64 |
% \vlderivation{ |
65 |
% \vlin{\rho}{}{\Gamma', ?A, }{ |
66 |
% \vlin{\cntr}{}{\Gamma, ?A}{\vlhy{\Gamma, ? A, ? A}} |
67 |
% } |
68 |
% } |
69 |
% \quad\to \quad |
70 |
% \vlderivation{ |
71 |
% \vlin{\cntr}{}{\Gamma', ?A}{ |
72 |
% \vlin{\rho}{}{\Gamma', ?A, ?A}{\vlhy{\Gamma, ? A, ? A}} |
73 |
% } |
74 |
% } |
75 |
% \] |
76 |
% for each unary rule $\rho$. |
77 |
% \item |
78 |
% The key steps: |
79 |
% \[ |
80 |
% \begin{array}{rcl} |
81 |
% \vlderivation{ |
82 |
% \vlin{\cntr}{}{\Gamma, ?A}{ |
83 |
% \vlin{\wk}{}{\Gamma, ?A, ?A}{\vlhy{\Gamma, ?A}} |
84 |
% } |
85 |
% } |
86 |
% \quad &\to & \quad |
87 |
% \Gamma, ?A |
88 |
%% \] |
89 |
%% and |
90 |
%% \[ |
91 |
%\\ |
92 |
%\noalign{\smallskip} |
93 |
% \vlderivation{ |
94 |
% \vlin{\wk}{}{\Gamma, ?A, ?A}{ |
95 |
% \vlin{\cntr}{}{\Gamma, ?A}{\vlhy{\Gamma, ?A, ?A}} |
96 |
% } |
97 |
% } |
98 |
% \quad &\to& \quad |
99 |
% \Gamma, ?A, ?A |
100 |
% \end{array} |
101 |
% \]. |
102 |
%\item The commuting steps, |
103 |
%\[ |
104 |
% \vlderivation{ |
105 |
% \vliin{\rho}{}{\Gamma ,?A}{ |
106 |
% \vlin{\cntr}{}{\Gamma_1, ?A}{\vlhy{\Gamma_1, ?A, ?A}} |
107 |
% }{\vlhy{\Gamma_2}} |
108 |
% } |
109 |
% \quad \to \quad |
110 |
% \vlderivation{ |
111 |
% \vlin{\cntr}{}{\Gamma, ?A}{ |
112 |
% \vliin{\rho}{}{\Gamma,?A, ?A}{\vlhy{\Gamma_1, ?A, ?A}}{ \vlhy{\Gamma_2} } |
113 |
% } |
114 |
% } |
115 |
%\] |
116 |
%%\[ |
117 |
%%\begin{array}{rcl} |
118 |
%% \vlderivation{ |
119 |
%% \vliin{\land}{}{\Gamma, \Delta, ?A, B\land C}{ |
120 |
%% \vlin{\cntr}{}{\Gamma, ?A, B}{\vlhy{\Gamma, ?A, ?A, B}} |
121 |
%% }{\vlhy{\Delta, C}} |
122 |
%% } |
123 |
%% \quad &\to &\quad |
124 |
%% \vlderivation{ |
125 |
%% \vlin{\cntr}{}{\Gamma, \Delta, ?A, B\land C}{ |
126 |
%% \vliin{\land}{}{\Gamma, \Delta, ?A, ?A, B\land C}{\vlhy{\Gamma, ?A, ?A, B}}{ \vlhy{\Delta, C} } |
127 |
%% } |
128 |
%% } |
129 |
%%% \] |
130 |
%%% |
131 |
%%% \[ |
132 |
%%\\ |
133 |
%%\noalign{\smallskip} |
134 |
%% \vlderivation{ |
135 |
%% \vliin{\cut}{}{\Gamma, \Delta, ?A}{ |
136 |
%% \vlin{\cntr}{}{\Gamma, ?A, B}{\vlhy{\Gamma, ?A, ?A, B}} |
137 |
%% }{\vlhy{\Delta, \lnot{B}}} |
138 |
%% } |
139 |
%% \quad &\to& \quad |
140 |
%% \vlderivation{ |
141 |
%% \vlin{\cntr}{}{\Gamma, \Delta, ?A}{ |
142 |
%% \vliin{\cut}{}{\Gamma, \Delta, ?A, ?A}{\vlhy{\Gamma, ?A, ?A, B}}{ \vlhy{\Delta, \lnot{B}} } |
143 |
%% } |
144 |
%% } |
145 |
%%\end{array} |
146 |
%%\] |
147 |
%for each binary rule $\rho \in \{ \land, \cut \}$. |
148 |
%\item The commuting step: |
149 |
% \[ |
150 |
% \vlderivation{ |
151 |
% \vliin{\vlan}{}{\Gamma, ?A, B\vlan C}{ |
152 |
% \vlin{\cntr}{}{\Gamma, ?A, B}{\vlhy{\Gamma, ?A, ?A, B}} |
153 |
% }{\vlhy{\Gamma, ?A, B}} |
154 |
% } |
155 |
% \quad \to \quad |
156 |
% \vlderivation{ |
157 |
% \vlin{\cntr}{}{\Gamma, ?A, B\vlan C}{ |
158 |
% \vliin{\vlan}{}{\Gamma, ?A, ?A, B\vlan C}{\vlhy{\Gamma, ?A, ?A, B}}{ |
159 |
% \vlin{\wk}{}{\Gamma, ?A, ?A, C}{\vlhy{\Gamma, ?A, C}} |
160 |
% } |
161 |
% } |
162 |
% } |
163 |
% \] |
164 |
% \end{enumerate} |
165 |
% For binary rules: |
166 |
% |
167 |
%\end{definition} |
168 |
%\begin{proposition} |
169 |
% $\anarrow{}{\cntdown}$ is weakly normalising |
170 |
% , modulo $\cntr$-$\cntr$ redexes, |
171 |
% and degree-preserving. |
172 |
% If $\pi$ is $\anarrow{}{\cutredlin}$-normal and $\pi \downarrow_\cntdown \pi'$, then so is $\pi'$. |
173 |
%\end{proposition} |
174 |
%\begin{proof} |
175 |
% By induction on the number of redexes in a proof. Start with bottommost redex, by induction on number of inference steps beneath it. |
176 |
%\end{proof} |
177 |
% |
178 |
%\begin{remark} |
179 |
% Only weakly normalising since $\cntr$ can commute with $\cntr$, allowing cycles. |
180 |
%\end{remark} |
181 |
% |
182 |
%\begin{proposition} |
183 |
% If $\pi$ is $\anarrow{}{\cutredexp}$-reducible but $\anarrow{}{\cutredlin}$- and $\anarrow{}{\cntdown}$-normal then there is a derivation $H:\pi \anarrow{*}{\cutredexp} \pi'$ such that $\deg (\pi')<\deg(\pi)$. |
184 |
%\end{proposition} |
185 |
% |
186 |
% |
187 |
% |
188 |
%\subsection{Base cases} |
189 |
% |
190 |
%\[ |
191 |
%\vlderivation{ |
192 |
%\vliin{\cut}{}{ \Gamma,a }{ \vlhy{\Gamma,a} }{ \vlin{\id}{}{a,a^\bot}{ \vlhy{} } } |
193 |
%} |
194 |
%\quad\to\quad |
195 |
%\vlderivation{ |
196 |
%\Gamma,a |
197 |
%} |
198 |
%\] |
199 |
% |
200 |
%\[ |
201 |
%\vlderivation{ |
202 |
%\vliin{\cut}{}{\Gamma}{ \vlin{\bot}{}{ \Gamma,\bot }{ \vlhy{\Gamma} } }{ \vlin{1}{}{1}{ \vlhy{} } } |
203 |
%} |
204 |
%\quad\to\quad |
205 |
%\vlderivation{ |
206 |
%\Gamma |
207 |
%} |
208 |
%\] |
209 |
% |
210 |
%\[ |
211 |
%\vlderivation{ |
212 |
%\vliin{\cut}{}{ \Gamma,\Delta,\top }{ \vlin{\top}{}{ \Gamma,\top,0 }{ \vlhy{} } }{ \vlhy{\Delta , \top } } |
213 |
%} |
214 |
%\quad\to\quad |
215 |
%\vlinf{\top}{}{ \Gamma,\Delta,\top }{} |
216 |
%\] |
217 |
% |
218 |
%\subsection{Commutative cases} |
219 |
%These are the cases when the principal formula of a step is not active for the cut-step below. |
220 |
% |
221 |
%\begin{enumerate} |
222 |
%\item The cut-step is immediately preceded by an initial step. Note that only the case for $\top$ applies: |
223 |
%\[ |
224 |
%\vlderivation{ |
225 |
%\vliin{\cut}{}{\Gamma,\Delta,\top}{ |
226 |
%\vlin{\top}{ }{ \Gamma,\top,A }{ \vlhy{} } |
227 |
% }{ \vlhy{\Delta,A^\bot } } |
228 |
%} |
229 |
%\quad\to\quad |
230 |
%\vlinf{\top}{}{ \Gamma,\Delta,\top }{} |
231 |
%\] |
232 |
%%Notice that this commutation eliminates the cut entirely and preserves the height of all cuts below. |
233 |
%\item\label{CaseCommOneStep} A cut-step is immediately preceded by a step $\rho$ with exactly one premiss: |
234 |
%\[ |
235 |
%\vlderivation{ |
236 |
%\vliin{\cut}{}{\Gamma',\Delta}{\vlin{\rho}{}{\Gamma',A}{\vlhy{\Gamma,A}}}{\vlhy{A^\bot , \Delta}} |
237 |
%} |
238 |
%\] |
239 |
%We have three subcases: |
240 |
%\begin{enumerate} |
241 |
%\item\label{subcase:unary-commutation-vanilla} |
242 |
%%$\Delta$ consists of only $?$-ed formulae or |
243 |
%If $\rho \notin \{! , \indr \}$ then we can simply permute as follows: |
244 |
%\begin{equation} |
245 |
%\label{eqn:com-case-unary-simple} |
246 |
%\vlderivation{ |
247 |
%\vliin{\cut}{}{\Gamma',\Delta}{\vlin{\rho}{}{\Gamma',A}{\vlhy{\Gamma,A}}}{\vlhy{A^\bot , \Delta}} |
248 |
%} |
249 |
%\quad \to \quad |
250 |
%\vlderivation{ |
251 |
%\vlin{\rho}{}{\Gamma',\Delta}{ |
252 |
%\vliin{\cut}{}{\Gamma,\Delta}{\vlhy{\Gamma,A}}{\vlhy{A^\bot , \Delta}} |
253 |
%} |
254 |
%} |
255 |
%\end{equation} |
256 |
%(If $\rho$ was $\forall$ then we might need to rename some free variables in $\Delta$.) |
257 |
%\item $\rho $ is a $!$-step. Therefore $\Gamma$ has the form $? \Sigma , B$ and $A$ has the form $?C$, yielding the following situation: |
258 |
%\[ |
259 |
%\vlderivation{ |
260 |
%\vliin{\cut}{}{? \Sigma, !B, \Delta }{ |
261 |
%\vlin{!}{}{? \Sigma, !B , ?C}{\vlhy{?\Sigma , B , ?C} } |
262 |
%}{ |
263 |
%\vlin{\rho'}{}{!C^\perp , \Delta}{\vlhy{\vlvdots}} |
264 |
%} |
265 |
%} |
266 |
%\] |
267 |
%Now, if $!C^\perp$ is principle for $\rho'$ then $\rho'\in \{! , \indr\}$ and so $\Delta $ must be $?$-ed; in this case we are able to apply the transformation \eqref{eqn:com-case-unary-simple}. Otherwise $A^\perp$ is not principal for $\rho'$ and so $\rho' \notin \{! , \indr \}$, which means we can apply \ref{subcase:unary-commutation-vanilla} along this side of the subproof. |
268 |
%\item $\rho$ is a $\indr$-step. Therefore $\Gamma$ has the form $? \Sigma , B^\perp(x), B(s x) $ and $A$ has the form $?C$, and the argument is similar to the case above. |
269 |
%% yielding the following situation: |
270 |
%%\[ |
271 |
%%\vlderivation{ |
272 |
%% \vliin{\cut}{}{? \Sigma, B^\perp (0) , B(t), \Delta }{ |
273 |
%% \vlin{\indr}{}{? \Sigma, B^\perp (0) , B(t) , ?C}{\vlhy{?\Sigma , B^\perp(x) , B(s x) , ?C} } |
274 |
%% }{ |
275 |
%% \vlin{\rho'}{}{!C^\perp , \Delta}{\vlhy{\vlvdots}} |
276 |
%%} |
277 |
%%} |
278 |
%%\] |
279 |
%\end{enumerate} |
280 |
% |
281 |
% |
282 |
% |
283 |
%\item A cut-step is immediately preceded by a $\vlte $-step: |
284 |
%\[ |
285 |
%\vlderivation{ |
286 |
%\vliin{\cut}{}{\Gamma,\Delta,\Sigma,A\vlte B }{ |
287 |
%\vliin{\vlte}{}{\Gamma,\Delta,A\vlte B,C }{\vlhy{\Gamma,A,C}}{\vlhy{\Delta,B}} |
288 |
%}{\vlhy{ \Sigma , C^\bot }} |
289 |
%} |
290 |
%\quad\to\quad |
291 |
%\vlderivation{ |
292 |
%\vliin{\vlte}{}{\Gamma,\Delta,\Sigma,A\vlte B}{ |
293 |
%\vliin{\cut}{}{\Gamma,\Sigma,A}{\vlhy{\Gamma,A,C}}{\vlhy{\Sigma,C^\bot}} |
294 |
%}{\vlhy{\Delta,B}} |
295 |
%} |
296 |
%\] |
297 |
%%Notice that this commutation might increase the height of any cuts below along the right branch of the indicated cut, but decreases the height along the left branch. |
298 |
%\item\label{CommCaseAmpersand} A cut-step is immediately preceded by a $\vlan$-step. |
299 |
%\[ |
300 |
%\vlderivation{ |
301 |
%\vliin{\cut}{}{ \Gamma,\Delta,A\vlan B }{ \vliin{\vlan}{}{\Gamma,A\vlan B,C}{ \vlhy{\Gamma,A,C} }{\vlhy{\Gamma,B,C}}}{ \vlhy{\Delta, C^\bot} } |
302 |
%} |
303 |
%\quad\to\quad |
304 |
%\vlderivation{ |
305 |
%\vliin{\vlan}{}{\Gamma,\Delta,A\vlan B }{ |
306 |
%\vliin{cut}{}{\Gamma,\Delta,A }{ \vlhy{\Gamma,A,C} }{ \vlhy{ \Delta,C^\bot } } |
307 |
%}{ |
308 |
%\vliin{ \cut }{}{\Gamma,\Delta,B}{ \vlhy{\Gamma,B,C } }{ \vlhy{\Delta,C^\bot} } |
309 |
%} |
310 |
%} |
311 |
%\] |
312 |
%\item (No rule for cuts commuting with cuts.) |
313 |
%%A cut-step is immediately preceded by another cut-step: |
314 |
%\[ |
315 |
%\vlderivation{ |
316 |
% \vliin{\cut}{}{\Gamma, \Delta, \Sigma}{ |
317 |
% \vliin{\cut}{}{\Gamma, \Delta, B}{\vlhy{\Gamma, A}}{\vlhy{\Delta, \lnot{A}, B}} |
318 |
% }{\vlhy{\Sigma, \lnot{B}}} |
319 |
% } |
320 |
% \quad\to\quad |
321 |
%\vlderivation{ |
322 |
% \vliin{\cut}{}{\Gamma, \Delta, \Sigma}{\vlhy{\Gamma, A}}{ |
323 |
% \vliin{\cut}{}{\Delta, \Sigma, \lnot{A}}{\vlhy{\Delta, \lnot{A}, B}}{\vlhy{\Sigma, \lnot{B}}} |
324 |
% } |
325 |
% } |
326 |
%\] |
327 |
%\end{enumerate} |
328 |
% |
329 |
% |
330 |
% |
331 |
%\subsection{Key cases: structural steps} |
332 |
%%[THIS SECTION MIGHT NOT BE NECESSARY] |
333 |
%We attempt to permute cuts on exponential formulae over structural steps whose principal formula is active for the cut. |
334 |
% |
335 |
%We use the commutative case \ref{CaseCommOneStep} to assume that the topmost cut-step in a sequence has already been permuted up to its origin on the $!$-side. |
336 |
% |
337 |
%We have two cases. |
338 |
%\begin{enumerate} |
339 |
%\item\label{StructStepCont} The structural step preceding the cut is a weakening: |
340 |
%\[ |
341 |
%\vlderivation{ |
342 |
%\vliin{\cut}{}{?\Gamma,\Delta}{ \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } }{ \vlin{w}{}{ ?A^\bot }{ \vlhy{\Delta } } } |
343 |
%} |
344 |
%\quad\to\quad |
345 |
%\vlinf{w}{}{?\Gamma,\Delta}{ \Delta } |
346 |
%\] |
347 |
%%\item The structural step preceding the cut is a contraction: |
348 |
%%\[ |
349 |
%%\vlderivation{ |
350 |
%%\vliin{\cut}{}{ ?\Gamma,\Delta }{ |
351 |
%% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } |
352 |
%%}{ \vlin{c}{}{ ?A^\bot , \Delta }{ \vlhy{ ?A^\bot , ?A^\bot , \Delta} } } |
353 |
%%} |
354 |
%%\quad\to\quad |
355 |
%%\vlderivation{ |
356 |
%%\vliq{c}{}{?\Gamma, \Delta}{ |
357 |
%%\vliin{\cut}{}{?\Gamma, ?\Gamma,\Delta }{ |
358 |
%% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } |
359 |
%%}{ |
360 |
%%\vliin{\cut}{}{?\Gamma,?A^\bot , \Delta }{ |
361 |
%% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } |
362 |
%%}{ \vlhy{?A^\bot , ?A^\bot , \Delta } } |
363 |
%%} |
364 |
%%} |
365 |
%%} |
366 |
%%\] |
367 |
%%OR use a multicut: |
368 |
%%\[ |
369 |
%%\vlderivation{ |
370 |
%%\vliin{\cut}{}{ ?\Gamma,\Delta }{ |
371 |
%% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } |
372 |
%%}{ \vlin{c}{}{ ?A^\bot , \Delta }{ \vlhy{ ?A^\bot , ?A^\bot , \Delta} } } |
373 |
%%} |
374 |
%%\quad\to\quad |
375 |
%%\vlderivation{ |
376 |
%%\vliin{\multicut}{}{?\Gamma,?A^\bot , \Delta }{ |
377 |
%% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } |
378 |
%%}{ \vlhy{?A^\bot , ?A^\bot , \Delta } } |
379 |
%%} |
380 |
%%\] |
381 |
%\item The structural step preceding a cut is a contraction: |
382 |
%\[ |
383 |
%\vlderivation{ |
384 |
% \vliin{\cut}{}{?\Gamma, \Sigma }{ \vlhy{?\Gamma,!A^\bot} }{ |
385 |
% \vlin{\cntr}{}{ ?A,\Sigma }{ \vlhy{ ?A,?A,\Sigma } } |
386 |
% } |
387 |
%} |
388 |
%\quad\to\quad |
389 |
%\vlderivation{ |
390 |
% \vliq{\cntr}{}{ ?\Gamma,\Sigma }{ |
391 |
% \vliin{\cut}{}{ ?\Gamma,?\Gamma,\Sigma }{ \vlhy{?\Gamma,!A^\bot } }{ |
392 |
% \vliin{\cut}{}{ ?A,?\Gamma,\Sigma }{ \vlhy{?\Gamma,!A^\bot} }{ \vlhy{ ?A,?A,?\Delta,\Sigma } } |
393 |
% } |
394 |
% } |
395 |
%} |
396 |
%\] |
397 |
%%\item The structural step preceding a cut is a parallel contraction: |
398 |
%%\[ |
399 |
%%\vlderivation{ |
400 |
%%\vliin{\cut}{}{?\Gamma,?\Delta, \Sigma }{ \vlhy{?\Gamma,!A^\bot} }{ |
401 |
%%\vlin{}{}{ ?A,?\Delta,\Sigma }{ \vlhy{ ?A,?A,?\Delta,?\Delta,\Sigma } } |
402 |
%%} |
403 |
%%} |
404 |
%%\quad\to\quad |
405 |
%%\vlderivation{ |
406 |
%%\vlin{}{}{ ?\Gamma,?\Delta,\Sigma }{ |
407 |
%%\vliin{\cut}{}{ ?\Gamma,?\Gamma,?\Delta,?\Delta,\Sigma }{ \vlhy{?\Gamma,!A^\bot } }{ |
408 |
%%\vliin{\cut}{}{ ?A,?\Gamma,?\Delta,?\Delta,\Sigma }{ \vlhy{?\Gamma,!A^\bot} }{ \vlhy{ ?A,?A,?\Delta,?\Delta,\Sigma } } |
409 |
%%} |
410 |
%%} |
411 |
%%} |
412 |
%%\] |
413 |
%\end{enumerate} |
414 |
% |
415 |
%\subsection{Key cases: logical steps} |
416 |
%Finally, once all cuts have been permuted maximally on both sides, we have the cases when the cut-formula is principal for a preceding logical step on both sides. We have three cases, one for every pair of connectives. |
417 |
%\begin{enumerate} |
418 |
%\item The cut-formula is multiplicative: |
419 |
%\[ |
420 |
%\vlderivation{ |
421 |
%\vliin{\cut}{}{ \Gamma,\Delta,\Sigma }{ |
422 |
%\vliin{\vlte}{}{ \Gamma,\Delta,A\vlte B }{ \vlhy{\Gamma,A} }{ \vlhy{\Delta,B} } |
423 |
%}{ \vlin{\vlpa}{}{ \Sigma, A^\bot \vlpa B^\bot }{ \vlhy{\Sigma , A^\bot , B^\bot} } } |
424 |
%} |
425 |
%\quad\to\quad |
426 |
%\vlderivation{ |
427 |
%\vliin{\cut}{}{ \Gamma,\Delta,\Sigma }{ \vlhy{\Gamma,A} }{ |
428 |
%\vliin{\cut}{}{ \Delta,\Sigma,A^\bot }{ \vlhy{\Delta,B} }{ \vlhy{\Sigma , A^\bot,B^\bot } } |
429 |
%} |
430 |
%} |
431 |
%\] |
432 |
%\item The cut-formula is additive, |
433 |
%\[ |
434 |
%\vlderivation{ |
435 |
%\vliin{\cut}{}{ \Gamma,\Delta }{ |
436 |
%\vliin{\vlan}{}{ \Gamma,A\vlan B }{ \vlhy{\Gamma,A} }{ \vlhy{\Gamma,B} } |
437 |
% }{ \vlin{\vlor}{}{ \Delta,A^\bot\vlor B^\bot }{ \vlhy{\Delta, A^\bot } } } |
438 |
%} |
439 |
%\quad\to\quad |
440 |
%\vliinf{\cut}{}{ \Gamma,\Delta }{ \Gamma,A }{ \Delta,A^\bot } |
441 |
%\] |
442 |
%where the case for the other $\vlor$-rule is symmetric. |
443 |
%\item The cut-formula is exponential. |
444 |
%\[ |
445 |
%\vlderivation{ |
446 |
%\vliin{\cut}{}{ ?\Gamma,\Delta }{ |
447 |
% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } |
448 |
%}{ |
449 |
%\vlin{?}{}{ \Delta,?A^\bot }{ \vlhy{\Delta, A^\bot } } |
450 |
%} |
451 |
%} |
452 |
%\quad\to\quad |
453 |
%\vliinf{\cut}{}{ ?\Gamma,\Delta }{ ?\Gamma,A }{ \Delta,A^\bot } |
454 |
%\] |
455 |
%\item The cut-formula is quantified. |
456 |
%\[ |
457 |
%\vlderivation{ |
458 |
% \vliin{\cut}{}{\Gamma, \Delta}{ |
459 |
% \vlin{\forall}{}{\Gamma, \forall x. A(x)}{\vltr{\pi(a)}{\Gamma, A(a)}{\vlhy{\quad}}{\vlhy{}}{\vlhy{\quad}}} |
460 |
% }{ |
461 |
% \vlin{\exists}{}{\Delta, \exists x . \lnot{A}(x)}{\vlhy{\Delta, \lnot{A}(t)}} |
462 |
% } |
463 |
% } |
464 |
% \quad \to \quad |
465 |
% \vlderivation{ |
466 |
% \vliin{\cut}{}{\Gamma, \Delta}{ |
467 |
% \vltr{\pi(t)}{\Gamma, A(t)}{\vlhy{\quad}}{\vlhy{}}{\vlhy{\quad}} |
468 |
% }{\vlhy{\Delta, \lnot{A}(t)}} |
469 |
% } |
470 |
%\] |
471 |
%\end{enumerate} |
472 |
% |