root / CSL16 / appendix-free-cut-elim.tex @ 186
Historique | Voir | Annoter | Télécharger (28,47 ko)
1 | 113 | adas | \section{Proofs and further remarks for Sect.~\ref{sect:free-cut-elim}} |
---|---|---|---|
2 | 106 | pbaillot | |
3 | 113 | adas | \paragraph*{Discussion on Dfn.~\ref{def:anchoredcut}} |
4 | 113 | adas | Our first idea would be to consider as anchored a cut whose cut-formulas $A$ in the two premises are both principal for their rule, and at least one of these rules is non-logical. Now, the problem with this tentative definition is that a rule (R) of $\mathcal T$ can contain several principal formulas (in $\Sigma'$, $\Delta'$) and so we would like to allow an anchored cut on each of these principal formulas. |
5 | 113 | adas | % Consider for instance the following derivation, where we have underlined principal formulas: |
6 | 113 | adas | Consider the following derivation, where principal formulas are underlined: |
7 | 113 | adas | \[ |
8 | 113 | adas | \vlderivation{ |
9 | 113 | adas | \vliin{\cut_2}{}{\seqar \Pi}{ |
10 | 113 | adas | \vliin{\cut_1}{}{\seqar C \land D}{ |
11 | 113 | adas | \vlin{\rigrul{\lor}}{}{ \seqar\underline{ A \lor B} }{\vlhy{\seqar A,B}} |
12 | 113 | adas | }{ |
13 | 113 | adas | \vlin{(R)}{}{ \underline{A\lor B} \seqar \underline{C\land D} }{ \vlhy{\Sigma \seqar \Delta} } |
14 | 113 | adas | } |
15 | 113 | adas | }{ |
16 | 113 | adas | \vlin{\lefrul{\land}}{}{ \underline{C\land D} \seqar \Pi }{\vlhy{C, D \seqar \Pi}} |
17 | 113 | adas | } |
18 | 113 | adas | } |
19 | 113 | adas | \] |
20 | 113 | adas | |
21 | 113 | adas | Here $cut_1$ is anchored in this sense, but not $cut_2$. This is why we need the more general definition of \emph{hereditarily principal formula}. |
22 | 113 | adas | |
23 | 113 | adas | |
24 | 110 | adas | \begin{proof} |
25 | 110 | adas | [Proof of Lemma~\ref{lem:hereditaryprincipalnonlogical}] |
26 | 113 | adas | Assume that $A$ is an occurrence of formula on the LHS of the sequent and hereditarily principal for a non-logical rule (R), then a direct ancestor of this formula is principal for (R) and thus by condition 4. $A$ cannot be of the form $?A'$. The other case is identical. |
27 | 110 | adas | \end{proof} |
28 | 110 | adas | |
29 | 106 | pbaillot | Define the \textit{degree} of a formula as the number of logical connectives or quantifiers in it. Let us first state an easy building-block of the proof, which comes from standard linear logic: |
30 | 106 | pbaillot | \begin{lemma}[Logical non-exponential cut-elimination steps]\label{lem:logical steps} |
31 | 106 | pbaillot | Any cut $c$ whose cut-formulas $A$ are both principal formulas of logical rules distinct from $?$, $!$, $wk$, $cntr$ rules can be replaced in one step by cuts on formulas of strictly lower degree (0, 1 or 2 cuts). |
32 | 106 | pbaillot | \end{lemma} |
33 | 106 | pbaillot | \begin{proof} |
34 | 106 | pbaillot | This is exactly as in plain linear logic. Just note that the case of a quantifier formula involves a substitution by a term $t$ throughout the proof, and this is where we need condition 3 on non-logical rules requiring that they are closed by substitution. |
35 | 106 | pbaillot | \end{proof} |
36 | 106 | pbaillot | |
37 | 113 | adas | Now we have all the necessary lemmas to proceed with the proof of the main theorem. |
38 | 113 | adas | \begin{proof}[Proof of Thm \ref{thm:free-cut-elim}] |
39 | 106 | pbaillot | Given a cut rule $c$ in a proof $\pi$, we call \emph{degree} $\deg( c)$ the number of connectives and quantifiers of its cut-formula. Now the \emph{degree} of the proof $\deg( \pi)$ is the multiset of the degrees of its non-anchored formulas. The degrees will be compared with the multiset ordering. |
40 | 106 | pbaillot | The demonstration proceeds by induction on the degree $\deg( \pi)$. For a given degree we proceed with a sub-induction on the \textit{height} $\height{\pi}$ of the proof. |
41 | 106 | pbaillot | |
42 | 106 | pbaillot | Consider a proof $\pi$ of non-null degree. We want to show how to reduce it to a proof of strictly lower degree. Consider a top-most non-anchored cut $c$ in $\pi$, that is to say such that there is no non-anchored cut above $c$. Let us call $A$ the cut-formula, and $(S_1)$ (resp. $(S_2)$) the rule above the left (resp. right) premise of $c$. |
43 | 106 | pbaillot | \[ |
44 | 106 | pbaillot | \vliinf{c \; \; \cut}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \vlinf{S_1}{}{\Gamma \seqar \Delta, A}{} }{\vlinf{S_2}{}{\Sigma, A \seqar \Pi}{}} |
45 | 106 | pbaillot | \] |
46 | 116 | pbaillot | Intuitively we proceed as follows: if $A$ is not hereditarily principal in one of its premises we will try to commute $c$ with the rule along its left premise $(S_1)$, and if it is not possible commute it with the rule along its right premise $(S_2)$, by using Lemmas \ref{lem:hereditaryprincipalnonlogical}, \ref{lem:standardcommutations} and \ref{lem:keycommutations}; if $A$ is hereditarily principal in both premises we proceed with a cut-elimination step, as in standard linear logic. For this second step, the delicate part is the elimination of exponential cuts, for which we use a big-step reduction; it works well because the contexts in the non-logical rules $(R)$ are marked with $!$ (resp. $?$) on the LHS (resp. RHS). |
47 | 106 | pbaillot | |
48 | 106 | pbaillot | So, let us distinguish the various cases: |
49 | 106 | pbaillot | \begin{itemize} |
50 | 113 | adas | \item \textbf{First case}: the cut-formula $A$ on the LHS of $c$ is not hereditarily principal. |
51 | 106 | pbaillot | |
52 | 106 | pbaillot | \begin{itemize} |
53 | 106 | pbaillot | \item Consider first the situation where $(S_1)$ is not one of the rules $(\rigrul{!})$, $(\lefrul{?})$, $(R)$. |
54 | 106 | pbaillot | |
55 | 106 | pbaillot | In this case the commutation of $c$ with $(S_1)$ can be done in the usual way, by using Lemma \ref{lem:standardcommutations}. Let us handle as an example the case where $(S_1)=(\rigrul{\laand})$. |
56 | 113 | adas | |
57 | 106 | pbaillot | \[ |
58 | 113 | adas | \begin{array}{cc} |
59 | 113 | adas | & \vlderivation{ |
60 | 106 | pbaillot | \vliin{c}{}{ \Gamma, \Sigma \seqar B_1\vlan B_2, \Delta, \Pi }{ \vliin{S_1=\rigrul{\vlan}}{}{\Gamma \seqar B_1\vlan B_2, \Delta, A}{ \vlhy{\Gamma \seqar B_1, \Delta, A} }{\vlhy{\Gamma \seqar B_2,\Delta, A}}}{ \vlhy{ \Sigma, A \seqar \Pi} } |
61 | 113 | adas | } \\ |
62 | 113 | adas | \noalign{\bigskip} |
63 | 113 | adas | \to\qquad\qquad |
64 | 113 | adas | & \vlderivation{ |
65 | 106 | pbaillot | \vliin{\rigrul{\vlan}}{}{ \Gamma, \Sigma \seqar B_1\vlan B_2, \Delta, \Pi }{ |
66 | 106 | pbaillot | \vliin{c_1}{}{\Gamma,\Sigma \seqar B_1, \Delta, \Pi }{ \vlhy{\Gamma \seqar B_1, \Delta, A} }{\vlhy{ \Sigma, A \seqar \Pi} } |
67 | 106 | pbaillot | }{ |
68 | 106 | pbaillot | \vliin{c_2}{}{\Gamma,\Sigma \seqar B_2, \Delta, \Pi }{ \vlhy{\Gamma \seqar B_2, \Delta, A} }{\vlhy{ \Sigma, A \seqar \Pi} } |
69 | 106 | pbaillot | } |
70 | 106 | pbaillot | } |
71 | 113 | adas | \end{array} |
72 | 106 | pbaillot | \] |
73 | 106 | pbaillot | |
74 | 113 | adas | |
75 | 106 | pbaillot | Observe that here $c$ is replaced by two cuts $c_1$ and $c_2$. Call $\pi_i$ the sub-derivation of last rule $c_i$, for $i=1,2$. As for $i=1, 2$ we have |
76 | 106 | pbaillot | $\deg{\pi_i}\leq \deg{\pi}$ and $\height{\pi_i}< \height{\pi}$ we can apply the induction hypothesis, and reduce $\pi_i$ to a proof $\pi'_i$ of same conclusion and with |
77 | 106 | pbaillot | $\deg{\pi'_i} < \deg{\pi_i}$. Therefore by replacing $\pi_i$ by $\pi'_i$ for $i=1, 2$ we obtain a proof $\pi'$ such that $\deg{\pi'}<\deg{\pi}$. |
78 | 106 | pbaillot | |
79 | 113 | adas | The case (S)=($\lefrul{\laor}$) is identical, and the other cases are simpler. % (see the Appendix for more examples). |
80 | 106 | pbaillot | |
81 | 113 | adas | \item Consider now the case where $(S_1)$ is equal to $(\rigrul{!})$, $(\lefrul{?})$ or $(R)$. Let us also assume that the cut-formula is hereditarily principal in its RHS premise, because if this does not hold we can move to the second case below. |
82 | 106 | pbaillot | |
83 | 113 | adas | First consider $(S_1)=(\rigrul{!})$. As $A$ is not principal in the conclusion of $(\rigrul{!})$ it is of the form $A=?A'$. By assumption we know that $A=?A'$ in the conclusion of $(S_2)$ is hereditarily principal on the LHS, so by Lemma \ref{lem:hereditaryprincipalnonlogical} it cannot be hereditarily principal for a non-logical rule, so by definition of hereditarily principal we deduce that $(S_2)$ is not an $(R)$ rule. It cannot be an $(\rigrul{!})$ rule either because then $?A'$ could not be a principal formula in its conclusion. Therefore the only possibility is that |
84 | 113 | adas | $(S_2)$ is an $(\lefrul{?})$ rule. So the RHS premise is of the shape $?A',!\Gamma' \seqar ?\Pi'$ and by Lemma \ref{lem:keycommutations} the commutation on the LHS is possible. We can conclude as previously. The case where $(S_1)=(\lefrul{?})$ is the same. |
85 | 106 | pbaillot | |
86 | 113 | adas | Now consider the case where $(S_1)=(R)$. As $A$ is not hereditarily principal in the conclusion of $(R)$, it is a context formula and it is on the RHS, so by definition of $(R)$ rules it is the form $A=?A'$. So as before by Lemma \ref{lem:hereditaryprincipalnonlogical} we deduce that $(S_2)=(\lefrul{?})$, and so the RHS premise is of the shape $?A',!\Gamma' \seqar ?\Pi'$. By Lemma \ref{lem:keycommutations} the commutation on the LHS is possible, and so again we conclude as previously. |
87 | 106 | pbaillot | \end{itemize} |
88 | 113 | adas | \item \textbf{Second case}: the cut-formulas on the LHS and RHS of $c$ are both not hereditarily principal. |
89 | 106 | pbaillot | |
90 | 106 | pbaillot | After the first case we are here left with the situation where $(S_1)$ is equal to $(\rigrul{!})$, $(\lefrul{?})$ or $(R)$. |
91 | 106 | pbaillot | \begin{itemize} |
92 | 106 | pbaillot | \item Consider the case where $(S_1)$=$(\rigrul{!})$, $(\lefrul{?})$, so $A$ is of the form $A=?A'$. All cases of commutation of $c$ with $(S_2)$ are as in standard linear logic, except if $(S_2)=(R)$. In this case though we cannot have $A=?A'$ because of the shape of rule $(R)$. So we are done. |
93 | 113 | adas | \item Consider $(S_1)=(R)$. Again as $A$ is not principal in the conclusion of $(S_1)$ and on the RHS of the sequent it is a context formula, and thus of the form $A=?A'$. As $?A'$ is not principal in the conclusion of $(S_2)$, it is thus a context formula on the LHS of sequent, and therefore $(S_2)$ is not a rule $(R)$. So $(S_2)$ is a logical rule. If it is not an $(\rigrul{!})$ or an $(\lefrul{?})$ it admits commutation with the cut, and we are done. If it is equal to $(\rigrul{!})$ or $(\lefrul{?})$ it cannot have $?A'$ as a context formula in the LHS of its conclusion, so these subcases do not occur. |
94 | 106 | pbaillot | \end{itemize} |
95 | 106 | pbaillot | |
96 | 106 | pbaillot | |
97 | 113 | adas | \item \textbf{Third case}: the cut-formulas on the LHS and RHS of $c$ are both hereditarily principal. |
98 | 106 | pbaillot | |
99 | 106 | pbaillot | By assumption $c$ is non anchored, so none of the two cut-formulas is hereditarily principal for a non-logical rule $(R)$. We can deduce from that |
100 | 113 | adas | that the LHS cut-formula is principal for $(S_1)$ and the RHS cut-formula is principal for $(S_2)$. Call $\pi_1$ (resp. $\pi_2$) the subderivation |
101 | 106 | pbaillot | of last rule $(S_1)$ (resp. $(S_2)$). |
102 | 106 | pbaillot | |
103 | 106 | pbaillot | Then we consider the following sub-cases, in order: |
104 | 106 | pbaillot | \begin{itemize} |
105 | 113 | adas | \item \textbf{weakening sub-case}: this is the case when one of the premises of $c$ is a $wk$ rule. Without loss of generality assume that it is the left premise of $c$ which is conclusion of $\rigrul{\wk}$, with principal formula $A$. We eliminate the cut by keeping only the LHS proof $\pi_1$, removing the last cut $c$ and last $\rigrul{\wk}$ rule on $A$, and by adding enough |
106 | 106 | pbaillot | $\rigrul{\wk}$, $\lefrul{\wk}$ rules to introduce all the new formulas in the final sequent. The degree has decreased. |
107 | 106 | pbaillot | |
108 | 106 | pbaillot | \item \textbf{exponential sub-case}: this is when one of the premises of $c$ is conclusion of a $cntr$, $\rigrul{?}$ or $\lefrul{!}$ rule on a formula $?A$ or $!A$, and the other one is not a conclusion of $\wk$. |
109 | 106 | pbaillot | |
110 | 113 | adas | Assume without loss of generality that it is the right premise which is conclusion of $\lefrul{\cntr}$ or $\lefrul{!}$ on $!A$, and thus the only possibility for the left premise is to be conclusion of $\rigrul{!}$. This is rule $(S_1)$ on the picture, last rule of the subderivation $\pi_1$, and we denote its conclusion as $!\Gamma' \seqar ?\Delta', !A$. We will use here a global rewriting step. For that consider in $\pi_2$ all the top-most direct ancestors of the cut-formula $!A$, that is to say direct ancestors which do not have any more direct ancestors above. Let us denote them as $!A^{j}$ for $1\leq j \leq k$. Observe that each $!A^{j}$ is principal formula of a rule $\lefrul{!}$ or $\lefrul{wk}$. Denote by $\rho$ the subderivation |
111 | 106 | pbaillot | of $\pi_2$ which has as leaves the sequents premises of these $\lefrul{!}$ or $\lefrul{wk}$ rules with conclusion containing $!A^{j}$. |
112 | 113 | adas | Let $\rho'$ be a derivation obtained from $\rho$ by renaming if necessary eigenvariables occurring in premises of rules $\lefrul{\exists}$, $\rigrul{\forall}$, $(R)$ so that none of them belongs to $FV(!\Gamma', ?\Delta')$, where we recall that $!\Gamma' \seqar ?\Delta',!A$ is the LHS premise of the cut $c$. |
113 | 106 | pbaillot | Now, let $\pi'_1$ be the immediate subderivation of $\pi_1$, of conclusion $!\Gamma' \seqar ?\Delta',A$. We then define the derivation |
114 | 106 | pbaillot | $\rho''$ obtained from $\rho'$ in the following way: |
115 | 106 | pbaillot | \begin{itemize} |
116 | 106 | pbaillot | \item add a cut $c_j$ with (a copy) of $\pi'_1$ on $A^j$ at each leaf which is premise of a rule $\lefrul{!}$; |
117 | 113 | adas | \item add to each sequent coming from $\rho'$ an additional context $!\Gamma'$ on the LHS and an additional context $?\Delta'$ on the RHS, and additional $wk$ rules to introduce these formulas below the $\lefrul{wk}$ rules on formulas $!A^{j}$; |
118 | 106 | pbaillot | \item introduce suitable $\lefrul{cntr}$ and $\rigrul{cntr}$ rules after multiplicative binary rules $\rigrul{\land}$, $\lefrul{\lor}$ in such a way to replace $!\Gamma', !\Gamma'$ (resp. $?\Delta', ?\Delta'$) by $!\Gamma'$ (resp. $?\Delta'$). |
119 | 106 | pbaillot | \end{itemize} |
120 | 106 | pbaillot | |
121 | 113 | adas | It can be checked that $\rho''$ is a valid derivation, because all the conditions for context-sensitive rules $(\rigrul{\forall})$, $(\lefrul{\exists})$, $(\rigrul{!})$, $(\lefrul{?})$, $(R)$ are satisfied. In particular the rules $(\rigrul{!})$, $(\lefrul{?})$, $(R)$ are satisfied because the contexts have been enlarged with $!$ formulas on the LHS of the sequents ($!\Gamma'$) and ? formulas on the RHS. of the sequents ($?\Gamma'$). |
122 | 106 | pbaillot | |
123 | 106 | pbaillot | Now, let $\pi'$ be the derivation obtained from $\pi$ by removing the cut $c$ and replacing the subderivation $\rho$ by $\rho''$. The derivation $\pi'$ is a valid one, it has the same conclusion $!\Gamma', \Sigma \seqar ?\Delta', \Pi$ and with respect to $\pi$ we have replaced one non-anchored cut $c$ with at most $k$ ones $c_j$, but which are of strictly lower degree. So $\deg(\pi')<\deg(\pi)$ and we are done. |
124 | 106 | pbaillot | |
125 | 106 | pbaillot | |
126 | 106 | pbaillot | \item \textbf{logical sub-case}: we are now left with the case where both premises of $c$ are conclusions of rules others than $?$, $!$, $wk$, $cntr$. We can thus apply Lemma \ref{lem:logical steps}. |
127 | 106 | pbaillot | If one of the premises is an axiom $\lefrul{\bot}$, $\id$ or $\rigrul{\bot}$, then $\pi$ can be rewritten to a suitable proof $\pi'$ by removing $c$ and the axiom rule. Otherwise both premises introduce the same connective, either $\land$, $\lor$, $\laor$, $\laand$, $\forall$ or $\exists$. In each case a specific rewriting rule replaces the cut $c$ with one cut of strictly lower degree. |
128 | 106 | pbaillot | %See the Appendix. |
129 | 106 | pbaillot | \end{itemize} |
130 | 106 | pbaillot | \end{itemize} |
131 | 106 | pbaillot | \end{proof} |
132 | 113 | adas | |
133 | 113 | adas | |
134 | 113 | adas | %\begin{remark} |
135 | 113 | adas | %[Complexity] |
136 | 113 | adas | %The exponential sub-case replaces a cut of degree $d$ by at most $|\pi|$ cuts of degree $d-1$, and also at most squares the size of the proof. |
137 | 113 | adas | %\end{remark} |
138 | 106 | pbaillot | |
139 | 106 | pbaillot | %\section{Some cut-elimination cases} |
140 | 106 | pbaillot | %We work in a one-sided calculus for full linear logic. When working in the affine setting we simply drop the condition that weakened formulae are $?$-ed. |
141 | 106 | pbaillot | % |
142 | 106 | pbaillot | %As well as all usual rules, we have the induction rule: |
143 | 106 | pbaillot | %\[ |
144 | 106 | pbaillot | %\vlinf{\indr}{(x \notin FV (\Gamma) )}{? \Gamma, A^\perp (0) , A(t)}{? \Gamma , A^\perp (x) , A(s x) } |
145 | 106 | pbaillot | %\] |
146 | 106 | pbaillot | % |
147 | 106 | pbaillot | %We give all the various cut-reduction cases in the following section but first we give a simple cut-elimination argument. |
148 | 106 | pbaillot | % |
149 | 106 | pbaillot | %\subsection{A basic (free-)cut elimination argument} |
150 | 106 | pbaillot | %We give an argument that easily scales to free-cut elimination, i.e.\ in the presence of non-logical rules. |
151 | 106 | pbaillot | % |
152 | 106 | pbaillot | %\newcommand{\anarrow}[2]{\overset{#1}{\underset{#2}{\longrightarrow}}} |
153 | 106 | pbaillot | %\newcommand{\cutredlin}{\mathit{ma}} |
154 | 106 | pbaillot | %\newcommand{\cutredexp}{exp} |
155 | 106 | pbaillot | % |
156 | 106 | pbaillot | %\begin{definition} |
157 | 106 | pbaillot | % Let $\anarrow{}{\cutredexp}$ denote the reduction steps concerning exponential cuts, and $\anarrow{}{\cutredlin}$ be the set of cut-reduction steps concerning multiplicative and additive cuts. |
158 | 106 | pbaillot | %\end{definition} |
159 | 106 | pbaillot | % |
160 | 106 | pbaillot | %\newcommand{\rk}{\mathsf{rk}} |
161 | 106 | pbaillot | % \renewcommand{\deg}{\mathsf{deg}} |
162 | 106 | pbaillot | %\begin{definition} |
163 | 106 | pbaillot | % [Measures] |
164 | 106 | pbaillot | % For a $\anarrow{}{\cutredlin}$-redex $r$, let its \emph{degree} $\deg( r)$ be the number of logical connectives or quantifiers in its cut-formula. For a proof $\pi$, its \emph{degree} $\deg( \pi)$ is the multiset of the degree of its redexes. |
165 | 106 | pbaillot | %\end{definition} |
166 | 106 | pbaillot | % |
167 | 106 | pbaillot | %\begin{proposition} |
168 | 106 | pbaillot | %If $\pi$ is not $\anarrow{}{\cutredlin}$-normal then there is a derivation $L:\pi \anarrow{*}{\cutredlin} \pi'$ such that $\deg(\pi')< \deg(\pi)$. |
169 | 106 | pbaillot | %\end{proposition} |
170 | 106 | pbaillot | %\begin{proof} |
171 | 106 | pbaillot | % First let us show the statement in the special case that $\pi$ contains precisely one $\cut$-inference as its final step, by induction on $|\pi|$. Each commutative $\anarrow{}{\cutredlin}$-step results in us being able to apply the inductive hypothesis to smaller proofs,- in the case of $\vlan $ two smaller proofs. Each key $\anarrow{}{\cutredlin}$-case strictly reduces the degree of the proof. Consequently we can eventually transform $\pi$ to a proof $\pi'$ which has possibly several cuts of smaller degree, as required. |
172 | 106 | pbaillot | % |
173 | 106 | pbaillot | % Now to the general case, we simply apply the above procedure to the subproof above a topmost cut in $\pi$. |
174 | 106 | pbaillot | %\end{proof} |
175 | 106 | pbaillot | %\begin{corollary} |
176 | 106 | pbaillot | % $\anarrow{}{\cutredlin}$ is weakly normalising. |
177 | 106 | pbaillot | %\end{corollary} |
178 | 106 | pbaillot | % |
179 | 106 | pbaillot | % |
180 | 106 | pbaillot | %\newcommand{\cntdown}{\mathit{cn}} |
181 | 106 | pbaillot | %\begin{definition} |
182 | 106 | pbaillot | % [Lazy contraction] |
183 | 106 | pbaillot | % Let $\anarrow{}{\cntdown}$ comprise of the following reduction steps: |
184 | 106 | pbaillot | % \begin{enumerate} |
185 | 106 | pbaillot | % \item The commuting steps, |
186 | 106 | pbaillot | % \[ |
187 | 106 | pbaillot | % \vlderivation{ |
188 | 106 | pbaillot | % \vlin{\rho}{}{\Gamma', ?A, }{ |
189 | 106 | pbaillot | % \vlin{\cntr}{}{\Gamma, ?A}{\vlhy{\Gamma, ? A, ? A}} |
190 | 106 | pbaillot | % } |
191 | 106 | pbaillot | % } |
192 | 106 | pbaillot | % \quad\to \quad |
193 | 106 | pbaillot | % \vlderivation{ |
194 | 106 | pbaillot | % \vlin{\cntr}{}{\Gamma', ?A}{ |
195 | 106 | pbaillot | % \vlin{\rho}{}{\Gamma', ?A, ?A}{\vlhy{\Gamma, ? A, ? A}} |
196 | 106 | pbaillot | % } |
197 | 106 | pbaillot | % } |
198 | 106 | pbaillot | % \] |
199 | 106 | pbaillot | % for each unary rule $\rho$. |
200 | 106 | pbaillot | % \item |
201 | 106 | pbaillot | % The key steps: |
202 | 106 | pbaillot | % \[ |
203 | 106 | pbaillot | % \begin{array}{rcl} |
204 | 106 | pbaillot | % \vlderivation{ |
205 | 106 | pbaillot | % \vlin{\cntr}{}{\Gamma, ?A}{ |
206 | 106 | pbaillot | % \vlin{\wk}{}{\Gamma, ?A, ?A}{\vlhy{\Gamma, ?A}} |
207 | 106 | pbaillot | % } |
208 | 106 | pbaillot | % } |
209 | 106 | pbaillot | % \quad &\to & \quad |
210 | 106 | pbaillot | % \Gamma, ?A |
211 | 106 | pbaillot | %% \] |
212 | 106 | pbaillot | %% and |
213 | 106 | pbaillot | %% \[ |
214 | 106 | pbaillot | %\\ |
215 | 106 | pbaillot | %\noalign{\smallskip} |
216 | 106 | pbaillot | % \vlderivation{ |
217 | 106 | pbaillot | % \vlin{\wk}{}{\Gamma, ?A, ?A}{ |
218 | 106 | pbaillot | % \vlin{\cntr}{}{\Gamma, ?A}{\vlhy{\Gamma, ?A, ?A}} |
219 | 106 | pbaillot | % } |
220 | 106 | pbaillot | % } |
221 | 106 | pbaillot | % \quad &\to& \quad |
222 | 106 | pbaillot | % \Gamma, ?A, ?A |
223 | 106 | pbaillot | % \end{array} |
224 | 106 | pbaillot | % \]. |
225 | 106 | pbaillot | %\item The commuting steps, |
226 | 106 | pbaillot | %\[ |
227 | 106 | pbaillot | % \vlderivation{ |
228 | 106 | pbaillot | % \vliin{\rho}{}{\Gamma ,?A}{ |
229 | 106 | pbaillot | % \vlin{\cntr}{}{\Gamma_1, ?A}{\vlhy{\Gamma_1, ?A, ?A}} |
230 | 106 | pbaillot | % }{\vlhy{\Gamma_2}} |
231 | 106 | pbaillot | % } |
232 | 106 | pbaillot | % \quad \to \quad |
233 | 106 | pbaillot | % \vlderivation{ |
234 | 106 | pbaillot | % \vlin{\cntr}{}{\Gamma, ?A}{ |
235 | 106 | pbaillot | % \vliin{\rho}{}{\Gamma,?A, ?A}{\vlhy{\Gamma_1, ?A, ?A}}{ \vlhy{\Gamma_2} } |
236 | 106 | pbaillot | % } |
237 | 106 | pbaillot | % } |
238 | 106 | pbaillot | %\] |
239 | 106 | pbaillot | %%\[ |
240 | 106 | pbaillot | %%\begin{array}{rcl} |
241 | 106 | pbaillot | %% \vlderivation{ |
242 | 106 | pbaillot | %% \vliin{\land}{}{\Gamma, \Delta, ?A, B\land C}{ |
243 | 106 | pbaillot | %% \vlin{\cntr}{}{\Gamma, ?A, B}{\vlhy{\Gamma, ?A, ?A, B}} |
244 | 106 | pbaillot | %% }{\vlhy{\Delta, C}} |
245 | 106 | pbaillot | %% } |
246 | 106 | pbaillot | %% \quad &\to &\quad |
247 | 106 | pbaillot | %% \vlderivation{ |
248 | 106 | pbaillot | %% \vlin{\cntr}{}{\Gamma, \Delta, ?A, B\land C}{ |
249 | 106 | pbaillot | %% \vliin{\land}{}{\Gamma, \Delta, ?A, ?A, B\land C}{\vlhy{\Gamma, ?A, ?A, B}}{ \vlhy{\Delta, C} } |
250 | 106 | pbaillot | %% } |
251 | 106 | pbaillot | %% } |
252 | 106 | pbaillot | %%% \] |
253 | 106 | pbaillot | %%% |
254 | 106 | pbaillot | %%% \[ |
255 | 106 | pbaillot | %%\\ |
256 | 106 | pbaillot | %%\noalign{\smallskip} |
257 | 106 | pbaillot | %% \vlderivation{ |
258 | 106 | pbaillot | %% \vliin{\cut}{}{\Gamma, \Delta, ?A}{ |
259 | 106 | pbaillot | %% \vlin{\cntr}{}{\Gamma, ?A, B}{\vlhy{\Gamma, ?A, ?A, B}} |
260 | 106 | pbaillot | %% }{\vlhy{\Delta, \lnot{B}}} |
261 | 106 | pbaillot | %% } |
262 | 106 | pbaillot | %% \quad &\to& \quad |
263 | 106 | pbaillot | %% \vlderivation{ |
264 | 106 | pbaillot | %% \vlin{\cntr}{}{\Gamma, \Delta, ?A}{ |
265 | 106 | pbaillot | %% \vliin{\cut}{}{\Gamma, \Delta, ?A, ?A}{\vlhy{\Gamma, ?A, ?A, B}}{ \vlhy{\Delta, \lnot{B}} } |
266 | 106 | pbaillot | %% } |
267 | 106 | pbaillot | %% } |
268 | 106 | pbaillot | %%\end{array} |
269 | 106 | pbaillot | %%\] |
270 | 106 | pbaillot | %for each binary rule $\rho \in \{ \land, \cut \}$. |
271 | 106 | pbaillot | %\item The commuting step: |
272 | 106 | pbaillot | % \[ |
273 | 106 | pbaillot | % \vlderivation{ |
274 | 106 | pbaillot | % \vliin{\vlan}{}{\Gamma, ?A, B\vlan C}{ |
275 | 106 | pbaillot | % \vlin{\cntr}{}{\Gamma, ?A, B}{\vlhy{\Gamma, ?A, ?A, B}} |
276 | 106 | pbaillot | % }{\vlhy{\Gamma, ?A, B}} |
277 | 106 | pbaillot | % } |
278 | 106 | pbaillot | % \quad \to \quad |
279 | 106 | pbaillot | % \vlderivation{ |
280 | 106 | pbaillot | % \vlin{\cntr}{}{\Gamma, ?A, B\vlan C}{ |
281 | 106 | pbaillot | % \vliin{\vlan}{}{\Gamma, ?A, ?A, B\vlan C}{\vlhy{\Gamma, ?A, ?A, B}}{ |
282 | 106 | pbaillot | % \vlin{\wk}{}{\Gamma, ?A, ?A, C}{\vlhy{\Gamma, ?A, C}} |
283 | 106 | pbaillot | % } |
284 | 106 | pbaillot | % } |
285 | 106 | pbaillot | % } |
286 | 106 | pbaillot | % \] |
287 | 106 | pbaillot | % \end{enumerate} |
288 | 106 | pbaillot | % For binary rules: |
289 | 106 | pbaillot | % |
290 | 106 | pbaillot | %\end{definition} |
291 | 106 | pbaillot | %\begin{proposition} |
292 | 106 | pbaillot | % $\anarrow{}{\cntdown}$ is weakly normalising |
293 | 106 | pbaillot | % , modulo $\cntr$-$\cntr$ redexes, |
294 | 106 | pbaillot | % and degree-preserving. |
295 | 106 | pbaillot | % If $\pi$ is $\anarrow{}{\cutredlin}$-normal and $\pi \downarrow_\cntdown \pi'$, then so is $\pi'$. |
296 | 106 | pbaillot | %\end{proposition} |
297 | 106 | pbaillot | %\begin{proof} |
298 | 106 | pbaillot | % By induction on the number of redexes in a proof. Start with bottommost redex, by induction on number of inference steps beneath it. |
299 | 106 | pbaillot | %\end{proof} |
300 | 106 | pbaillot | % |
301 | 106 | pbaillot | %\begin{remark} |
302 | 106 | pbaillot | % Only weakly normalising since $\cntr$ can commute with $\cntr$, allowing cycles. |
303 | 106 | pbaillot | %\end{remark} |
304 | 106 | pbaillot | % |
305 | 106 | pbaillot | %\begin{proposition} |
306 | 106 | pbaillot | % If $\pi$ is $\anarrow{}{\cutredexp}$-reducible but $\anarrow{}{\cutredlin}$- and $\anarrow{}{\cntdown}$-normal then there is a derivation $H:\pi \anarrow{*}{\cutredexp} \pi'$ such that $\deg (\pi')<\deg(\pi)$. |
307 | 106 | pbaillot | %\end{proposition} |
308 | 106 | pbaillot | % |
309 | 106 | pbaillot | % |
310 | 106 | pbaillot | % |
311 | 106 | pbaillot | %\subsection{Base cases} |
312 | 106 | pbaillot | % |
313 | 106 | pbaillot | %\[ |
314 | 106 | pbaillot | %\vlderivation{ |
315 | 106 | pbaillot | %\vliin{\cut}{}{ \Gamma,a }{ \vlhy{\Gamma,a} }{ \vlin{\id}{}{a,a^\bot}{ \vlhy{} } } |
316 | 106 | pbaillot | %} |
317 | 106 | pbaillot | %\quad\to\quad |
318 | 106 | pbaillot | %\vlderivation{ |
319 | 106 | pbaillot | %\Gamma,a |
320 | 106 | pbaillot | %} |
321 | 106 | pbaillot | %\] |
322 | 106 | pbaillot | % |
323 | 106 | pbaillot | %\[ |
324 | 106 | pbaillot | %\vlderivation{ |
325 | 106 | pbaillot | %\vliin{\cut}{}{\Gamma}{ \vlin{\bot}{}{ \Gamma,\bot }{ \vlhy{\Gamma} } }{ \vlin{1}{}{1}{ \vlhy{} } } |
326 | 106 | pbaillot | %} |
327 | 106 | pbaillot | %\quad\to\quad |
328 | 106 | pbaillot | %\vlderivation{ |
329 | 106 | pbaillot | %\Gamma |
330 | 106 | pbaillot | %} |
331 | 106 | pbaillot | %\] |
332 | 106 | pbaillot | % |
333 | 106 | pbaillot | %\[ |
334 | 106 | pbaillot | %\vlderivation{ |
335 | 106 | pbaillot | %\vliin{\cut}{}{ \Gamma,\Delta,\top }{ \vlin{\top}{}{ \Gamma,\top,0 }{ \vlhy{} } }{ \vlhy{\Delta , \top } } |
336 | 106 | pbaillot | %} |
337 | 106 | pbaillot | %\quad\to\quad |
338 | 106 | pbaillot | %\vlinf{\top}{}{ \Gamma,\Delta,\top }{} |
339 | 106 | pbaillot | %\] |
340 | 106 | pbaillot | % |
341 | 106 | pbaillot | %\subsection{Commutative cases} |
342 | 106 | pbaillot | %These are the cases when the principal formula of a step is not active for the cut-step below. |
343 | 106 | pbaillot | % |
344 | 106 | pbaillot | %\begin{enumerate} |
345 | 106 | pbaillot | %\item The cut-step is immediately preceded by an initial step. Note that only the case for $\top$ applies: |
346 | 106 | pbaillot | %\[ |
347 | 106 | pbaillot | %\vlderivation{ |
348 | 106 | pbaillot | %\vliin{\cut}{}{\Gamma,\Delta,\top}{ |
349 | 106 | pbaillot | %\vlin{\top}{ }{ \Gamma,\top,A }{ \vlhy{} } |
350 | 106 | pbaillot | % }{ \vlhy{\Delta,A^\bot } } |
351 | 106 | pbaillot | %} |
352 | 106 | pbaillot | %\quad\to\quad |
353 | 106 | pbaillot | %\vlinf{\top}{}{ \Gamma,\Delta,\top }{} |
354 | 106 | pbaillot | %\] |
355 | 106 | pbaillot | %%Notice that this commutation eliminates the cut entirely and preserves the height of all cuts below. |
356 | 106 | pbaillot | %\item\label{CaseCommOneStep} A cut-step is immediately preceded by a step $\rho$ with exactly one premiss: |
357 | 106 | pbaillot | %\[ |
358 | 106 | pbaillot | %\vlderivation{ |
359 | 106 | pbaillot | %\vliin{\cut}{}{\Gamma',\Delta}{\vlin{\rho}{}{\Gamma',A}{\vlhy{\Gamma,A}}}{\vlhy{A^\bot , \Delta}} |
360 | 106 | pbaillot | %} |
361 | 106 | pbaillot | %\] |
362 | 106 | pbaillot | %We have three subcases: |
363 | 106 | pbaillot | %\begin{enumerate} |
364 | 106 | pbaillot | %\item\label{subcase:unary-commutation-vanilla} |
365 | 106 | pbaillot | %%$\Delta$ consists of only $?$-ed formulae or |
366 | 106 | pbaillot | %If $\rho \notin \{! , \indr \}$ then we can simply permute as follows: |
367 | 106 | pbaillot | %\begin{equation} |
368 | 106 | pbaillot | %\label{eqn:com-case-unary-simple} |
369 | 106 | pbaillot | %\vlderivation{ |
370 | 106 | pbaillot | %\vliin{\cut}{}{\Gamma',\Delta}{\vlin{\rho}{}{\Gamma',A}{\vlhy{\Gamma,A}}}{\vlhy{A^\bot , \Delta}} |
371 | 106 | pbaillot | %} |
372 | 106 | pbaillot | %\quad \to \quad |
373 | 106 | pbaillot | %\vlderivation{ |
374 | 106 | pbaillot | %\vlin{\rho}{}{\Gamma',\Delta}{ |
375 | 106 | pbaillot | %\vliin{\cut}{}{\Gamma,\Delta}{\vlhy{\Gamma,A}}{\vlhy{A^\bot , \Delta}} |
376 | 106 | pbaillot | %} |
377 | 106 | pbaillot | %} |
378 | 106 | pbaillot | %\end{equation} |
379 | 106 | pbaillot | %(If $\rho$ was $\forall$ then we might need to rename some free variables in $\Delta$.) |
380 | 106 | pbaillot | %\item $\rho $ is a $!$-step. Therefore $\Gamma$ has the form $? \Sigma , B$ and $A$ has the form $?C$, yielding the following situation: |
381 | 106 | pbaillot | %\[ |
382 | 106 | pbaillot | %\vlderivation{ |
383 | 106 | pbaillot | %\vliin{\cut}{}{? \Sigma, !B, \Delta }{ |
384 | 106 | pbaillot | %\vlin{!}{}{? \Sigma, !B , ?C}{\vlhy{?\Sigma , B , ?C} } |
385 | 106 | pbaillot | %}{ |
386 | 106 | pbaillot | %\vlin{\rho'}{}{!C^\perp , \Delta}{\vlhy{\vlvdots}} |
387 | 106 | pbaillot | %} |
388 | 106 | pbaillot | %} |
389 | 106 | pbaillot | %\] |
390 | 106 | pbaillot | %Now, if $!C^\perp$ is principle for $\rho'$ then $\rho'\in \{! , \indr\}$ and so $\Delta $ must be $?$-ed; in this case we are able to apply the transformation \eqref{eqn:com-case-unary-simple}. Otherwise $A^\perp$ is not principal for $\rho'$ and so $\rho' \notin \{! , \indr \}$, which means we can apply \ref{subcase:unary-commutation-vanilla} along this side of the subproof. |
391 | 106 | pbaillot | %\item $\rho$ is a $\indr$-step. Therefore $\Gamma$ has the form $? \Sigma , B^\perp(x), B(s x) $ and $A$ has the form $?C$, and the argument is similar to the case above. |
392 | 106 | pbaillot | %% yielding the following situation: |
393 | 106 | pbaillot | %%\[ |
394 | 106 | pbaillot | %%\vlderivation{ |
395 | 106 | pbaillot | %% \vliin{\cut}{}{? \Sigma, B^\perp (0) , B(t), \Delta }{ |
396 | 106 | pbaillot | %% \vlin{\indr}{}{? \Sigma, B^\perp (0) , B(t) , ?C}{\vlhy{?\Sigma , B^\perp(x) , B(s x) , ?C} } |
397 | 106 | pbaillot | %% }{ |
398 | 106 | pbaillot | %% \vlin{\rho'}{}{!C^\perp , \Delta}{\vlhy{\vlvdots}} |
399 | 106 | pbaillot | %%} |
400 | 106 | pbaillot | %%} |
401 | 106 | pbaillot | %%\] |
402 | 106 | pbaillot | %\end{enumerate} |
403 | 106 | pbaillot | % |
404 | 106 | pbaillot | % |
405 | 106 | pbaillot | % |
406 | 106 | pbaillot | %\item A cut-step is immediately preceded by a $\vlte $-step: |
407 | 106 | pbaillot | %\[ |
408 | 106 | pbaillot | %\vlderivation{ |
409 | 106 | pbaillot | %\vliin{\cut}{}{\Gamma,\Delta,\Sigma,A\vlte B }{ |
410 | 106 | pbaillot | %\vliin{\vlte}{}{\Gamma,\Delta,A\vlte B,C }{\vlhy{\Gamma,A,C}}{\vlhy{\Delta,B}} |
411 | 106 | pbaillot | %}{\vlhy{ \Sigma , C^\bot }} |
412 | 106 | pbaillot | %} |
413 | 106 | pbaillot | %\quad\to\quad |
414 | 106 | pbaillot | %\vlderivation{ |
415 | 106 | pbaillot | %\vliin{\vlte}{}{\Gamma,\Delta,\Sigma,A\vlte B}{ |
416 | 106 | pbaillot | %\vliin{\cut}{}{\Gamma,\Sigma,A}{\vlhy{\Gamma,A,C}}{\vlhy{\Sigma,C^\bot}} |
417 | 106 | pbaillot | %}{\vlhy{\Delta,B}} |
418 | 106 | pbaillot | %} |
419 | 106 | pbaillot | %\] |
420 | 106 | pbaillot | %%Notice that this commutation might increase the height of any cuts below along the right branch of the indicated cut, but decreases the height along the left branch. |
421 | 106 | pbaillot | %\item\label{CommCaseAmpersand} A cut-step is immediately preceded by a $\vlan$-step. |
422 | 106 | pbaillot | %\[ |
423 | 106 | pbaillot | %\vlderivation{ |
424 | 106 | pbaillot | %\vliin{\cut}{}{ \Gamma,\Delta,A\vlan B }{ \vliin{\vlan}{}{\Gamma,A\vlan B,C}{ \vlhy{\Gamma,A,C} }{\vlhy{\Gamma,B,C}}}{ \vlhy{\Delta, C^\bot} } |
425 | 106 | pbaillot | %} |
426 | 106 | pbaillot | %\quad\to\quad |
427 | 106 | pbaillot | %\vlderivation{ |
428 | 106 | pbaillot | %\vliin{\vlan}{}{\Gamma,\Delta,A\vlan B }{ |
429 | 106 | pbaillot | %\vliin{cut}{}{\Gamma,\Delta,A }{ \vlhy{\Gamma,A,C} }{ \vlhy{ \Delta,C^\bot } } |
430 | 106 | pbaillot | %}{ |
431 | 106 | pbaillot | %\vliin{ \cut }{}{\Gamma,\Delta,B}{ \vlhy{\Gamma,B,C } }{ \vlhy{\Delta,C^\bot} } |
432 | 106 | pbaillot | %} |
433 | 106 | pbaillot | %} |
434 | 106 | pbaillot | %\] |
435 | 106 | pbaillot | %\item (No rule for cuts commuting with cuts.) |
436 | 106 | pbaillot | %%A cut-step is immediately preceded by another cut-step: |
437 | 106 | pbaillot | %\[ |
438 | 106 | pbaillot | %\vlderivation{ |
439 | 106 | pbaillot | % \vliin{\cut}{}{\Gamma, \Delta, \Sigma}{ |
440 | 106 | pbaillot | % \vliin{\cut}{}{\Gamma, \Delta, B}{\vlhy{\Gamma, A}}{\vlhy{\Delta, \lnot{A}, B}} |
441 | 106 | pbaillot | % }{\vlhy{\Sigma, \lnot{B}}} |
442 | 106 | pbaillot | % } |
443 | 106 | pbaillot | % \quad\to\quad |
444 | 106 | pbaillot | %\vlderivation{ |
445 | 106 | pbaillot | % \vliin{\cut}{}{\Gamma, \Delta, \Sigma}{\vlhy{\Gamma, A}}{ |
446 | 106 | pbaillot | % \vliin{\cut}{}{\Delta, \Sigma, \lnot{A}}{\vlhy{\Delta, \lnot{A}, B}}{\vlhy{\Sigma, \lnot{B}}} |
447 | 106 | pbaillot | % } |
448 | 106 | pbaillot | % } |
449 | 106 | pbaillot | %\] |
450 | 106 | pbaillot | %\end{enumerate} |
451 | 106 | pbaillot | % |
452 | 106 | pbaillot | % |
453 | 106 | pbaillot | % |
454 | 106 | pbaillot | %\subsection{Key cases: structural steps} |
455 | 106 | pbaillot | %%[THIS SECTION MIGHT NOT BE NECESSARY] |
456 | 106 | pbaillot | %We attempt to permute cuts on exponential formulae over structural steps whose principal formula is active for the cut. |
457 | 106 | pbaillot | % |
458 | 106 | pbaillot | %We use the commutative case \ref{CaseCommOneStep} to assume that the topmost cut-step in a sequence has already been permuted up to its origin on the $!$-side. |
459 | 106 | pbaillot | % |
460 | 106 | pbaillot | %We have two cases. |
461 | 106 | pbaillot | %\begin{enumerate} |
462 | 106 | pbaillot | %\item\label{StructStepCont} The structural step preceding the cut is a weakening: |
463 | 106 | pbaillot | %\[ |
464 | 106 | pbaillot | %\vlderivation{ |
465 | 106 | pbaillot | %\vliin{\cut}{}{?\Gamma,\Delta}{ \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } }{ \vlin{w}{}{ ?A^\bot }{ \vlhy{\Delta } } } |
466 | 106 | pbaillot | %} |
467 | 106 | pbaillot | %\quad\to\quad |
468 | 106 | pbaillot | %\vlinf{w}{}{?\Gamma,\Delta}{ \Delta } |
469 | 106 | pbaillot | %\] |
470 | 106 | pbaillot | %%\item The structural step preceding the cut is a contraction: |
471 | 106 | pbaillot | %%\[ |
472 | 106 | pbaillot | %%\vlderivation{ |
473 | 106 | pbaillot | %%\vliin{\cut}{}{ ?\Gamma,\Delta }{ |
474 | 106 | pbaillot | %% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } |
475 | 106 | pbaillot | %%}{ \vlin{c}{}{ ?A^\bot , \Delta }{ \vlhy{ ?A^\bot , ?A^\bot , \Delta} } } |
476 | 106 | pbaillot | %%} |
477 | 106 | pbaillot | %%\quad\to\quad |
478 | 106 | pbaillot | %%\vlderivation{ |
479 | 106 | pbaillot | %%\vliq{c}{}{?\Gamma, \Delta}{ |
480 | 106 | pbaillot | %%\vliin{\cut}{}{?\Gamma, ?\Gamma,\Delta }{ |
481 | 106 | pbaillot | %% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } |
482 | 106 | pbaillot | %%}{ |
483 | 106 | pbaillot | %%\vliin{\cut}{}{?\Gamma,?A^\bot , \Delta }{ |
484 | 106 | pbaillot | %% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } |
485 | 106 | pbaillot | %%}{ \vlhy{?A^\bot , ?A^\bot , \Delta } } |
486 | 106 | pbaillot | %%} |
487 | 106 | pbaillot | %%} |
488 | 106 | pbaillot | %%} |
489 | 106 | pbaillot | %%\] |
490 | 106 | pbaillot | %%OR use a multicut: |
491 | 106 | pbaillot | %%\[ |
492 | 106 | pbaillot | %%\vlderivation{ |
493 | 106 | pbaillot | %%\vliin{\cut}{}{ ?\Gamma,\Delta }{ |
494 | 106 | pbaillot | %% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } |
495 | 106 | pbaillot | %%}{ \vlin{c}{}{ ?A^\bot , \Delta }{ \vlhy{ ?A^\bot , ?A^\bot , \Delta} } } |
496 | 106 | pbaillot | %%} |
497 | 106 | pbaillot | %%\quad\to\quad |
498 | 106 | pbaillot | %%\vlderivation{ |
499 | 106 | pbaillot | %%\vliin{\multicut}{}{?\Gamma,?A^\bot , \Delta }{ |
500 | 106 | pbaillot | %% \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } |
501 | 106 | pbaillot | %%}{ \vlhy{?A^\bot , ?A^\bot , \Delta } } |
502 | 106 | pbaillot | %%} |
503 | 106 | pbaillot | %%\] |
504 | 106 | pbaillot | %\item The structural step preceding a cut is a contraction: |
505 | 106 | pbaillot | %\[ |
506 | 106 | pbaillot | %\vlderivation{ |
507 | 106 | pbaillot | % \vliin{\cut}{}{?\Gamma, \Sigma }{ \vlhy{?\Gamma,!A^\bot} }{ |
508 | 106 | pbaillot | % \vlin{\cntr}{}{ ?A,\Sigma }{ \vlhy{ ?A,?A,\Sigma } } |
509 | 106 | pbaillot | % } |
510 | 106 | pbaillot | %} |
511 | 106 | pbaillot | %\quad\to\quad |
512 | 106 | pbaillot | %\vlderivation{ |
513 | 106 | pbaillot | % \vliq{\cntr}{}{ ?\Gamma,\Sigma }{ |
514 | 106 | pbaillot | % \vliin{\cut}{}{ ?\Gamma,?\Gamma,\Sigma }{ \vlhy{?\Gamma,!A^\bot } }{ |
515 | 106 | pbaillot | % \vliin{\cut}{}{ ?A,?\Gamma,\Sigma }{ \vlhy{?\Gamma,!A^\bot} }{ \vlhy{ ?A,?A,?\Delta,\Sigma } } |
516 | 106 | pbaillot | % } |
517 | 106 | pbaillot | % } |
518 | 106 | pbaillot | %} |
519 | 106 | pbaillot | %\] |
520 | 106 | pbaillot | %%\item The structural step preceding a cut is a parallel contraction: |
521 | 106 | pbaillot | %%\[ |
522 | 106 | pbaillot | %%\vlderivation{ |
523 | 106 | pbaillot | %%\vliin{\cut}{}{?\Gamma,?\Delta, \Sigma }{ \vlhy{?\Gamma,!A^\bot} }{ |
524 | 106 | pbaillot | %%\vlin{}{}{ ?A,?\Delta,\Sigma }{ \vlhy{ ?A,?A,?\Delta,?\Delta,\Sigma } } |
525 | 106 | pbaillot | %%} |
526 | 106 | pbaillot | %%} |
527 | 106 | pbaillot | %%\quad\to\quad |
528 | 106 | pbaillot | %%\vlderivation{ |
529 | 106 | pbaillot | %%\vlin{}{}{ ?\Gamma,?\Delta,\Sigma }{ |
530 | 106 | pbaillot | %%\vliin{\cut}{}{ ?\Gamma,?\Gamma,?\Delta,?\Delta,\Sigma }{ \vlhy{?\Gamma,!A^\bot } }{ |
531 | 106 | pbaillot | %%\vliin{\cut}{}{ ?A,?\Gamma,?\Delta,?\Delta,\Sigma }{ \vlhy{?\Gamma,!A^\bot} }{ \vlhy{ ?A,?A,?\Delta,?\Delta,\Sigma } } |
532 | 106 | pbaillot | %%} |
533 | 106 | pbaillot | %%} |
534 | 106 | pbaillot | %%} |
535 | 106 | pbaillot | %%\] |
536 | 106 | pbaillot | %\end{enumerate} |
537 | 106 | pbaillot | % |
538 | 106 | pbaillot | %\subsection{Key cases: logical steps} |
539 | 106 | pbaillot | %Finally, once all cuts have been permuted maximally on both sides, we have the cases when the cut-formula is principal for a preceding logical step on both sides. We have three cases, one for every pair of connectives. |
540 | 106 | pbaillot | %\begin{enumerate} |
541 | 106 | pbaillot | %\item The cut-formula is multiplicative: |
542 | 106 | pbaillot | %\[ |
543 | 106 | pbaillot | %\vlderivation{ |
544 | 106 | pbaillot | %\vliin{\cut}{}{ \Gamma,\Delta,\Sigma }{ |
545 | 106 | pbaillot | %\vliin{\vlte}{}{ \Gamma,\Delta,A\vlte B }{ \vlhy{\Gamma,A} }{ \vlhy{\Delta,B} } |
546 | 106 | pbaillot | %}{ \vlin{\vlpa}{}{ \Sigma, A^\bot \vlpa B^\bot }{ \vlhy{\Sigma , A^\bot , B^\bot} } } |
547 | 106 | pbaillot | %} |
548 | 106 | pbaillot | %\quad\to\quad |
549 | 106 | pbaillot | %\vlderivation{ |
550 | 106 | pbaillot | %\vliin{\cut}{}{ \Gamma,\Delta,\Sigma }{ \vlhy{\Gamma,A} }{ |
551 | 106 | pbaillot | %\vliin{\cut}{}{ \Delta,\Sigma,A^\bot }{ \vlhy{\Delta,B} }{ \vlhy{\Sigma , A^\bot,B^\bot } } |
552 | 106 | pbaillot | %} |
553 | 106 | pbaillot | %} |
554 | 106 | pbaillot | %\] |
555 | 106 | pbaillot | %\item The cut-formula is additive, |
556 | 106 | pbaillot | %\[ |
557 | 106 | pbaillot | %\vlderivation{ |
558 | 106 | pbaillot | %\vliin{\cut}{}{ \Gamma,\Delta }{ |
559 | 106 | pbaillot | %\vliin{\vlan}{}{ \Gamma,A\vlan B }{ \vlhy{\Gamma,A} }{ \vlhy{\Gamma,B} } |
560 | 106 | pbaillot | % }{ \vlin{\vlor}{}{ \Delta,A^\bot\vlor B^\bot }{ \vlhy{\Delta, A^\bot } } } |
561 | 106 | pbaillot | %} |
562 | 106 | pbaillot | %\quad\to\quad |
563 | 106 | pbaillot | %\vliinf{\cut}{}{ \Gamma,\Delta }{ \Gamma,A }{ \Delta,A^\bot } |
564 | 106 | pbaillot | %\] |
565 | 106 | pbaillot | %where the case for the other $\vlor$-rule is symmetric. |
566 | 106 | pbaillot | %\item The cut-formula is exponential. |
567 | 106 | pbaillot | %\[ |
568 | 106 | pbaillot | %\vlderivation{ |
569 | 106 | pbaillot | %\vliin{\cut}{}{ ?\Gamma,\Delta }{ |
570 | 106 | pbaillot | % \vlin{!}{}{ ?\Gamma,!A }{ \vlhy{?\Gamma , A} } |
571 | 106 | pbaillot | %}{ |
572 | 106 | pbaillot | %\vlin{?}{}{ \Delta,?A^\bot }{ \vlhy{\Delta, A^\bot } } |
573 | 106 | pbaillot | %} |
574 | 106 | pbaillot | %} |
575 | 106 | pbaillot | %\quad\to\quad |
576 | 106 | pbaillot | %\vliinf{\cut}{}{ ?\Gamma,\Delta }{ ?\Gamma,A }{ \Delta,A^\bot } |
577 | 106 | pbaillot | %\] |
578 | 106 | pbaillot | %\item The cut-formula is quantified. |
579 | 106 | pbaillot | %\[ |
580 | 106 | pbaillot | %\vlderivation{ |
581 | 106 | pbaillot | % \vliin{\cut}{}{\Gamma, \Delta}{ |
582 | 106 | pbaillot | % \vlin{\forall}{}{\Gamma, \forall x. A(x)}{\vltr{\pi(a)}{\Gamma, A(a)}{\vlhy{\quad}}{\vlhy{}}{\vlhy{\quad}}} |
583 | 106 | pbaillot | % }{ |
584 | 106 | pbaillot | % \vlin{\exists}{}{\Delta, \exists x . \lnot{A}(x)}{\vlhy{\Delta, \lnot{A}(t)}} |
585 | 106 | pbaillot | % } |
586 | 106 | pbaillot | % } |
587 | 106 | pbaillot | % \quad \to \quad |
588 | 106 | pbaillot | % \vlderivation{ |
589 | 106 | pbaillot | % \vliin{\cut}{}{\Gamma, \Delta}{ |
590 | 106 | pbaillot | % \vltr{\pi(t)}{\Gamma, A(t)}{\vlhy{\quad}}{\vlhy{}}{\vlhy{\quad}} |
591 | 106 | pbaillot | % }{\vlhy{\Delta, \lnot{A}(t)}} |
592 | 106 | pbaillot | % } |
593 | 106 | pbaillot | %\] |
594 | 106 | pbaillot | %\end{enumerate} |