Statistiques
| Révision :

root / CSL17 / arithmetic.tex @ 183

Historique | Voir | Annoter | Télécharger (18,14 ko)

1 166 adas
\section{An arithmetic for the polynomial hierarchy}
2 182 pbaillot
%Our base language is $\{ 0, \succ{} , + , \times, \smsh , |\cdot| , \leq \}$.
3 183 pbaillot
Our base language is defined by the set of functions (and constants) symbols $\{ 0, \succ{} , + , \times, \smsh , |\cdot|, \hlf{}.\}$ and the set of predicate symbols
4 182 pbaillot
 $\{\leq, \safe, \normal \}$.
5 182 pbaillot
We use classical logic connectives $\neg$, $\cand$, $\cor$, $\forall$, $\exists$. The formula $A \cimp B$ will be a notation for $\neg A \cor B$.
6 182 pbaillot
We will also use as shorthand notations:
7 182 pbaillot
$$ (s=t) = (s\leq t) \cand (t\leq s), \quad (s\neq t) = \neg(s=t).$$
8 182 pbaillot
We call \textit{atomic formulas} formulas of the form $(s\leq t)$ or $(s=t)$.
9 182 pbaillot
 As we are in classical logic, we will assume, without loss of generality, that formulas are in \textit{De Morgan normal form}, that is to say that in formulas negation can only occur on atomic formulas, and that there is not any occurrence of subformula of the form $\neg \neg A$.
10 156 adas
11 183 pbaillot
In the sequel $\succ{0}(x)$ stand for $2\cdot x$ and $\succ{1}(x)$ stand for $\succ{}(2\cdot x)$,
12 182 pbaillot
Now, let us describe the axioms we are considering.The $\basic$ axioms are as follows:
13 171 adas
\[
14 171 adas
\begin{array}{l}
15 171 adas
\safe (0) \\
16 172 adas
\forall x^\safe . \safe (\succ{} x) \\
17 172 adas
\forall x^\safe . 0 \neq \succ{} (x) \\
18 172 adas
\forall x^\safe , y^\safe . (\succ{} x = \succ{} y \cimp x = y) \\
19 176 adas
\forall x^\safe . (x = 0 \cor \exists y^\safe.\  x = \succ{} y   )\\
20 176 adas
\forall x^\safe, y^\safe . \safe(x+y)\\
21 176 adas
\forall u^\normal, x^\safe . \safe(u\times x) \\
22 179 pbaillot
\forall u^\normal , v^\normal . \safe (u \smsh v)\\
23 183 pbaillot
\forall u^\normal \safe(u) \\
24 183 pbaillot
\forall u^\normal \safe(\hlf{u})\\
25 183 pbaillot
\forall x^\safe \safe(|x|)
26 171 adas
\end{array}
27 171 adas
\]
28 183 pbaillot
\patrick{did I type writly the 2 last axioms?}
29 183 pbaillot
30 183 pbaillot
and the list of axioms of Appendix \ref{appendix:arithmetic}, coming from \cite{Buss86book}.
31 183 pbaillot
32 172 adas
\anupam{in fact, we use essentially the same language, so just take Buss' Basic axioms after proper typing. Should also add the symbol $\hlf{\cdot}$ for binary predecessor then we have the full language of bounded arithmetic.}
33 168 adas
34 172 adas
35 179 pbaillot
Notation: if $\vec t=t_0,\dots, t_k$, we will denote as $\safe(\vec t)$ the sequence of formulas $\safe(t_0),\dots, \safe(t_k)$. Similarly for $\normal(\vec t)$.
36 179 pbaillot
37 172 adas
\begin{definition}
38 172 adas
[Derived functions and notations]
39 172 adas
We write $1,2,3,\dots$ for the terms $\succ{} 0, \succ{} \succ{} 0, \succ{} \succ{} \succ{} 0 \dots$, and frequently omit the $\times$ symbol.
40 172 adas
We define the functions $\succ 0 x , \succ 1 x$ as $2 x$ and $2x +1$ respectively.
41 176 adas
42 176 adas
Need $bit$, $\beta$ , $\pair{}{}{}$.
43 172 adas
\end{definition}
44 172 adas
45 157 adas
(Here use a variation of S12 with sharply bounded quantifiers and safe quantifiers)
46 157 adas
47 157 adas
Use base theory + sharply bounded quantifiers.
48 157 adas
49 157 adas
50 157 adas
\begin{definition}
51 157 adas
[Quantifier hierarchy]
52 176 adas
$\Sigma^\safe_0 = \Pi^\safe_0 $ is the set of formulae whose only quantifiers are sharply bounded.
53 176 adas
We define $\Sigma^\safe_{i+1}$ as the closure of $\Pi^\safe_i $ under $\cor, \cand $, safe existentials and sharply bounded quantifiers.
54 176 adas
We define $\Pi^\safe_{i+1}$ as the closure of $\Sigma^\safe_i $ under $\cor, \cand $, safe universals and sharply bounded quantifiers.
55 157 adas
\end{definition}
56 157 adas
57 168 adas
58 168 adas
\anupam{Collection principles for prenexing? Otherwise need to add closure under sharply bounded quantifiers.}
59 177 pbaillot
\begin{definition}\label{def:polynomialinduction}
60 177 pbaillot
[Polynomial induction]
61 177 pbaillot
The \emph{polynomial induction} axiom schema, $\pind$, consists of the following axioms,
62 177 pbaillot
\[
63 177 pbaillot
A(0)
64 177 pbaillot
\cimp (\forall x^{\normal} . ( A(x) \cimp A(\succ{0} x) ) )
65 177 pbaillot
\cimp  (\forall x^{\normal} . ( A(x) \cimp A(\succ{1} x) ) )
66 177 pbaillot
\cimp  \forall x^{\normal} . A(x)
67 177 pbaillot
\]
68 177 pbaillot
for each formula $A(x)$.
69 168 adas
70 177 pbaillot
For a class $\Xi$ of formulae, $\cax{\Xi}{\pind}$ denotes the set of induction axioms when $A(x) \in \Xi$.
71 168 adas
72 177 pbaillot
%We write $I\Xi$ to denote the theory consisting of $\basic$ and $\cax{\Xi}{\ind}$.
73 177 pbaillot
\end{definition}
74 177 pbaillot
75 177 pbaillot
76 178 pbaillot
\begin{definition}\label{def:ariththeory}
77 166 adas
Define the theory $\arith^i$ consisting of the following axioms:
78 166 adas
\begin{itemize}
79 166 adas
	\item $\basic$;
80 166 adas
	\item $\cpind{\Sigma^\safe_i } $:
81 166 adas
\end{itemize}
82 180 pbaillot
and an inference rule, called $\rais$, for closed formulas $\exists y^\normal . A$:
83 168 adas
\[
84 168 adas
 \dfrac{\forall \vec x^\normal . \exists  y^\safe .  A }{ \forall \vec x^\normal .\exists y^\normal . A}
85 168 adas
\]
86 157 adas
\end{definition}
87 182 pbaillot
\patrick{I think in the definition of  $\arith^i$ we should impose that the formulas considered are \textit{integer positive}, that is to say that the only negative occurrences of atoms $\safe(t)$, $\normal(t)$ are those occurring in $\forall^{\safe}$ and $\forall^{\normal}$.  Indeed I don't think this can be just proved to be a consequence of a kind of 'normal form' of proofs, as we had discussed (see sect 4.4)}
88 182 pbaillot
89 168 adas
\anupam{In induction,for inductive cases, need $u\neq 0$ for $\succ 0$ case.}
90 157 adas
91 157 adas
\begin{lemma}
92 157 adas
[Sharply bounded lemma]
93 157 adas
Let $f_A$ be the characteristic function of a predicate $A(u , \vec u ; \vec x)$.
94 157 adas
Then the characteristic functions of $\forall u \prefix v . A(u,\vec u ; \vec x)$ and $\exists u \prefix v . A(u , \vec u ; \vec x)$ are in $\bc(f_A)$.
95 157 adas
\end{lemma}
96 157 adas
\begin{proof}
97 157 adas
	We give the $\forall$ case, the $\exists$ case being dual.
98 157 adas
	The characteristic function $f(v , \vec u ; \vec x)$ is defined by predicative recursion on $v$ as:
99 157 adas
	\[
100 157 adas
	\begin{array}{rcl}
101 157 adas
	f(0, \vec u ; \vec x) & \dfn & f_A (0 , \vec u ; \vec x) \\
102 157 adas
	f(\succ i v , \vec u ; \vec x) & \dfn & \cond ( ; f_A (\succ i v, \vec u ; \vec x) , 0 , f(v , \vec u ; \vec x) )
103 157 adas
	\end{array}
104 157 adas
	\]
105 157 adas
\end{proof}
106 157 adas
107 157 adas
Notice that $\prefix$ suffices to encode usual sharply bounded inequalities,
108 168 adas
since $\forall u \leq |t| . A(u , \vec u ; \vec x) \ciff \forall u \prefix t . A(|u|, \vec u ; \vec x)$.
109 168 adas
110 168 adas
111 168 adas
\subsection{Graphs of some basic functions}
112 168 adas
Todo: $+1$,
113 168 adas
114 168 adas
\subsection{Encoding sequences in the arithmetic}
115 168 adas
\todo{}
116 168 adas
117 168 adas
\anupam{Assume we have a $\Sigma^\safe_1$ predicate $\beta(i,x,y)$, expressing that the $i$th element of the sequence $x$ is $y$, such that $\arith^1 \proves \forall i^\normal , x^\safe . \exists ! y^\safe . \beta (i,x,y)$.}
118 168 adas
119 168 adas
120 168 adas
\subsection{A sequent calculus presentation}
121 168 adas
122 174 pbaillot
\begin{figure}
123 174 pbaillot
\[
124 174 pbaillot
\small
125 174 pbaillot
\begin{array}{l}
126 174 pbaillot
\begin{array}{cccc}
127 174 pbaillot
%\vlinf{\lefrul{\bot}}{}{p, \lnot{p} \seqar }{}
128 174 pbaillot
%& \vlinf{\id}{}{p \seqar p}{}
129 174 pbaillot
%& \vlinf{\rigrul{\bot}}{}{\seqar p, \lnot{p}}{}
130 174 pbaillot
%& \vliinf{\cut}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta, A }{\Sigma, A \seqar \Pi}
131 180 pbaillot
 \vlinf{id}{}{\Gamma, p \seqar p, \Delta }{}
132 174 pbaillot
& \vliinf{cut}{}{\Gamma \seqar \Delta }{ \Gamma \seqar \Delta, A }{\Gamma, A \seqar \Delta}
133 174 pbaillot
&&
134 174 pbaillot
\\
135 174 pbaillot
\noalign{\bigskip}
136 174 pbaillot
%\noalign{\bigskip}
137 174 pbaillot
\vliinf{\lefrul{\cor}}{}{\Gamma, A \cor B \seqar \Delta}{\Gamma , A \seqar \Delta}{\Gamma, B \seqar \Delta}
138 174 pbaillot
&
139 174 pbaillot
\vlinf{\lefrul{\cand}}{}{\Gamma, A\cand B \seqar \Delta}{\Gamma, A , B \seqar \Delta}
140 174 pbaillot
&
141 174 pbaillot
%\vlinf{\lefrul{\laand}}{}{\Gamma, A\laand B \seqar \Delta}{\Gamma, B \seqar \Delta}
142 174 pbaillot
%\quad
143 174 pbaillot
\vlinf{\rigrul{\cor}}{}{\Gamma \seqar \Delta, A \cor B}{\Gamma \seqar \Delta, A, B}
144 174 pbaillot
&
145 174 pbaillot
%\vlinf{\rigrul{\laor}}{}{\Gamma \seqar \Delta, A\laor B}{\Gamma \seqar \Delta, B}
146 174 pbaillot
%\quad
147 174 pbaillot
\vliinf{\rigrul{\cand}}{}{\Gamma \seqar \Delta, A \cand B }{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, B}
148 174 pbaillot
\\
149 174 pbaillot
\noalign{\bigskip}
150 179 pbaillot
151 174 pbaillot
\vlinf{\lefrul{\neg}}{}{\Gamma, \neg A \seqar \Delta}{\Gamma \seqar A, \Delta}
152 174 pbaillot
&
153 174 pbaillot
154 179 pbaillot
\vlinf{\lefrul{\neg}}{}{\Gamma, \seqar \neg A, \Delta}{\Gamma, A \seqar  \Delta}
155 174 pbaillot
&
156 179 pbaillot
&
157 179 pbaillot
%\vliinf{\lefrul{\cimp}}{}{\Gamma, A \cimp B \seqar \Delta}{\Gamma \seqar A, \Delta}{\Gamma, B \seqar \Delta}
158 179 pbaillot
%&
159 179 pbaillot
%
160 179 pbaillot
%\vlinf{\rigrul{\cimp}}{}{\Gamma \seqar \Delta, A \cimp B}{\Gamma, A \seqar \Delta,  B}
161 174 pbaillot
162 179 pbaillot
163 174 pbaillot
\\
164 174 pbaillot
165 174 pbaillot
\noalign{\bigskip}
166 174 pbaillot
%\text{Structural:} & & & \\
167 174 pbaillot
%\noalign{\bigskip}
168 174 pbaillot
169 180 pbaillot
%\vlinf{\lefrul{\wk}}{}{\Gamma, A \seqar \Delta}{\Gamma \seqar \Delta}
170 180 pbaillot
%&
171 174 pbaillot
\vlinf{\lefrul{\cntr}}{}{\Gamma, A \seqar \Delta}{\Gamma, A, A \seqar \Delta}
172 180 pbaillot
%&
173 180 pbaillot
%\vlinf{\rigrul{\wk}}{}{\Gamma \seqar \Delta, A }{\Gamma \seqar \Delta}
174 174 pbaillot
&
175 180 pbaillot
\vlinf{\rigrul{\cntr}}{}{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, A, A}
176 174 pbaillot
&
177 180 pbaillot
&
178 174 pbaillot
\\
179 174 pbaillot
\noalign{\bigskip}
180 174 pbaillot
\vlinf{\lefrul{\exists}}{}{\Gamma, \exists x . A(x) \seqar \Delta}{\Gamma, A(a) \seqar \Delta}
181 174 pbaillot
&
182 174 pbaillot
\vlinf{\lefrul{\forall}}{}{\Gamma, \forall x. A(x) \seqar \Delta}{\Gamma, A(t) \seqar \Delta}
183 174 pbaillot
&
184 174 pbaillot
\vlinf{\rigrul{\exists}}{}{\Gamma \seqar \Delta, \exists x . A(x)}{ \Gamma \seqar \Delta, A(t)}
185 174 pbaillot
&
186 174 pbaillot
\vlinf{\rigrul{\forall}}{}{\Gamma \seqar \Delta, \forall x . A(x)}{ \Gamma \seqar \Delta, A(a) } \\
187 174 pbaillot
%\noalign{\bigskip}
188 174 pbaillot
% \vliinf{mix}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta}{\Sigma \seqar \Pi} &&&
189 174 pbaillot
\end{array}
190 174 pbaillot
\end{array}
191 174 pbaillot
\]
192 174 pbaillot
\caption{Sequent calculus rules}\label{fig:sequentcalculus}
193 174 pbaillot
\end{figure}
194 174 pbaillot
 We denote sequence as $\Gamma \seqar \Delta$ where $\Gamma$, $\Delta$ are multi sets of formulas. The sequent calculus rules are displayed on Fig. \ref{fig:sequentcalculus},  where $p$ is atomic, $i \in \{ 1,2 \}$, $t$ is a term and the eigenvariable $a$ does not occur free in $\Gamma$ or $\Delta$.
195 174 pbaillot
196 174 pbaillot
We consider \emph{systems} of `nonlogical' rules extending this sequent calculus, which we write as follows,
197 174 pbaillot
 \[
198 174 pbaillot
 \begin{array}{cc}
199 174 pbaillot
    \vlinf{(R)}{}{ \Gamma , \Sigma' \seqar \Delta' , \Pi  }{ \{\Gamma , \Sigma_i \seqar \Delta_i , \Pi \}_{i \in I} }
200 174 pbaillot
\end{array}
201 174 pbaillot
\]
202 174 pbaillot
 where, in each rule $(R)$, $I$ is a finite possibly empty set (indicating the number of premises) and we assume the following conditions and terminology:
203 174 pbaillot
 \begin{enumerate}
204 174 pbaillot
 \item In $(R)$ the formulas of $\Sigma', \Delta'$  are called \textit{principal}, those of $\Sigma_i, \Delta_i$ are called \textit{active}, and those of
205 174 pbaillot
$ \Gamma,  \Pi$ are called \textit{context formulas}.
206 174 pbaillot
\item Each rule $(R)$ comes with a list $a_1$, \dots, $a_k$ of eigenvariables such that each $a_j$ appears in exactly one $\Sigma_i, \Delta_i$ (so in some active formulas of exactly one premise)  and does not appear in  $\Sigma', \Delta'$ or $ \Gamma,  \Pi$.
207 174 pbaillot
    \item A system $\mathcal{S}$ of rules must be closed under substitutions of free variables by terms (where these substitutions do not contain the eigenvariables $a_j$ in their domain or codomain).
208 174 pbaillot
   \end{enumerate}
209 174 pbaillot
210 174 pbaillot
%The distinction between modal and nonmodal formulae in $(R)$ induces condition 1
211 174 pbaillot
 Conditions 2 and 3 are standard requirements for nonlogical rules, independently of the logical setting, cf.\ \cite{Beckmann11}. Condition 2 reflects the intuitive idea that, in our nonlogical rules, we often need a notion of \textit{bound} variables in the active formulas (typically for induction rules), for which we rely on eigenvariables. Condition 3 is needed for our proof system to admit elimination of cuts on quantified formulas.
212 174 pbaillot
213 177 pbaillot
%\begin{definition}
214 177 pbaillot
%[Polynomial induction]
215 177 pbaillot
%The \emph{polynomial induction} axiom schema, $\pind$, consists of the following axioms,
216 177 pbaillot
%\[
217 177 pbaillot
%A(0)
218 177 pbaillot
%\cimp (\forall x^{\normal} . ( A(x) \cimp A(\succ{0} x) ) )
219 177 pbaillot
%\cimp  (\forall x^{\normal} . ( A(x) \cimp A(\succ{1} x) ) )
220 177 pbaillot
%\cimp  \forall x^{\normal} . A(x)
221 177 pbaillot
%\]
222 177 pbaillot
%for each formula $A(x)$.
223 177 pbaillot
%
224 177 pbaillot
%For a class $\Xi$ of formulae, $\cax{\Xi}{\pind}$ denotes the set of induction axioms when $A(x) \in \Xi$.
225 177 pbaillot
%
226 177 pbaillot
%We write $I\Xi$ to denote the theory consisting of $\basic$ and $\cax{\Xi}{\ind}$.
227 177 pbaillot
%\end{definition}
228 174 pbaillot
229 177 pbaillot
As an example any axiom can be represented by such a nonlogical rule $(R)$, with no premise ($I=\emptyset$), $\Delta'$ equal to the axiom and $\Gamma=\Sigma'=\Pi$. For instance the axiom $\pind$ of Def. \ref{def:polynomialinduction}.
230 177 pbaillot
231 177 pbaillot
Actually  $\pind$ is equivalent to the following rule:
232 177 pbaillot
\begin{equation}
233 177 pbaillot
\label{eqn:ind-rule}
234 177 pbaillot
\small
235 177 pbaillot
\vliinf{\pind}{}{ \normal(t) , \Gamma , A(0) \seqar A(t), \Delta }{ \normal(a) , \Gamma, A(a) \seqar A(\succ{0} a) , \Delta }{ \normal(a) , \Gamma, A(a) \seqar A(\succ{1} a) , \Delta  }
236 177 pbaillot
\end{equation}
237 177 pbaillot
where $I=2$ and  in all cases, $t$ varies over arbitrary terms and the eigenvariable $a$ does not occur in the lower sequent of the $\pind$ rule.
238 177 pbaillot
239 178 pbaillot
Similarly the $\rais$ inference rule of Def. \ref{def:ariththeory} is represented by the nonlogical rule:
240 177 pbaillot
 \[
241 177 pbaillot
 \begin{array}{cc}
242 179 pbaillot
    \vlinf{\rais}{}{  \normal(t_1), \dots, \normal(t_k) \seqar  \exists  y^\normal .  A }{  \normal(t_1), \dots, \normal(t_k) \seqar \exists  y^\safe .  A}
243 177 pbaillot
\end{array}
244 177 pbaillot
\]
245 179 pbaillot
246 179 pbaillot
%\patrick{In fact, I think we rather need the following nonlogical rule, which implies the previous one but is I guess more general:
247 179 pbaillot
%\[
248 179 pbaillot
% \begin{array}{cc}
249 179 pbaillot
%    \vlinf{\rais}{}{  \normal(t_1), \dots, \normal(t_k) \seqar  \normal(t) }{  \normal(t_1), \dots, \normal(t_k) \seqar \safe(t)}
250 179 pbaillot
%\end{array}
251 179 pbaillot
%\]
252 179 pbaillot
%}
253 179 pbaillot
254 179 pbaillot
The $\basic$ axioms are equivalent to the following nonlogical rules, that we will also designate by $\basic$:
255 179 pbaillot
\[
256 179 pbaillot
\small
257 179 pbaillot
\begin{array}{l}
258 179 pbaillot
\begin{array}{cccc}
259 179 pbaillot
\vlinf{}{}{\seqar \safe (0)}{}&
260 179 pbaillot
\vlinf{}{}{\safe(t) \seqar \safe(\succ{} t)}{}&
261 179 pbaillot
\vlinf{}{}{ \safe (t)   \seqar 0 \neq \succ{} t}{} &
262 179 pbaillot
\vlinf{}{}{\safe (s) , \safe (t)  , \succ{} s = \succ{} t\seqar s = t }{}\\
263 179 pbaillot
\end{array}
264 179 pbaillot
\\
265 179 pbaillot
\vlinf{}{}{\safe (t) \seqar t = 0 \cor \exists y^\safe . t = \succ{} y  }{}
266 179 pbaillot
\qquad
267 179 pbaillot
\vlinf{}{}{\safe(s), \safe(t) \seqar \safe(s+t) }{}\\
268 179 pbaillot
\vlinf{}{}{\normal (s), \safe(t) \seqar \safe(s \times t)  }{}
269 179 pbaillot
\qquad
270 179 pbaillot
\vlinf{}{}{\normal (s), \normal(t) \seqar \safe(s \smsh t)  }{}\\
271 180 pbaillot
\vlinf{}{}{\normal(t) \seqar \safe(t)  }{}
272 179 pbaillot
\end{array}
273 179 pbaillot
\]
274 179 pbaillot
275 179 pbaillot
 The sequent calculus for $\arith^i$ is that of Fig. \ref{fig:sequentcalculus} extended with the $\basic$,  $\cpind{\Sigma^\safe_i } $ and $\rais$ nonlogical rules.
276 179 pbaillot
277 179 pbaillot
 \begin{lemma}
278 179 pbaillot
 For any term $t$, its free variables can be split in two sets $\vec{x}$ and $\vec{y}$ such  that the sequent $\normal(\vec x), \safe(\vec y) \seqar \safe(t)$ is provable.
279 179 pbaillot
 \end{lemma}
280 179 pbaillot
281 168 adas
\subsection{Free-cut free normal form of proofs}
282 174 pbaillot
\todo{State theorem, with references (Takeuti, Cook-Nguyen) and present the important corollaries for this work.}
283 175 pbaillot
284 174 pbaillot
Since our nonlogical rules may have many principal formulae on which cuts may be anchored, we need a slightly more general notion of principality.
285 174 pbaillot
    \begin{definition}\label{def:anchoredcut}
286 174 pbaillot
  We define the notions of \textit{hereditarily principal formula} and \textit{anchored cut} in a $\system$-proof, for a system $\system$, by mutual induction as follows:
287 174 pbaillot
  \begin{itemize}
288 174 pbaillot
  \item A formula $A$ in a sequent $\Gamma \seqar \Delta$ is \textit{hereditarily principal} for a rule instance (S) if either (i) the sequent is in the conclusion of (S) and $A$ is principal in it, or
289 174 pbaillot
(ii)  the sequent is in the conclusion of an anchored cut, the direct ancestor of $A$ in the corresponding premise is hereditarily principal for the rule instance (S), and the rule (S) is nonlogical.
290 174 pbaillot
  \item A cut-step is an \textit{anchored cut} if the two occurrences of its cut-formula $A$ in each premise are hereditarily principal for nonlogical steps, or one is hereditarily principal for a nonlogical step and the other one is principal for a logical step.
291 174 pbaillot
  \end{itemize}
292 174 pbaillot
     A cut which is not anchored will also be called a \textit{free-cut}.
293 174 pbaillot
  \end{definition}
294 174 pbaillot
  As a consequence of this definition, an anchored cut on a formula $A$ has the following properties:
295 174 pbaillot
  \begin{itemize}
296 174 pbaillot
  \item At least one of the two premises of the cut has above it a sub-branch of the proof which starts (top-down) with a nonlogical step (R) with $A$ as one of its principal formulas, and then a sequence of anchored cuts in which $A$ is part of the context.
297 174 pbaillot
  \item The other premise is either of the same form or is a logical step with principal formula $A$.
298 174 pbaillot
  \end{itemize}
299 174 pbaillot
300 174 pbaillot
   Now we have (see \cite{Takeuti87}):
301 174 pbaillot
   \begin{theorem}
302 179 pbaillot
   [Free-cut elimination]\label{thm:freecutelimination}
303 174 pbaillot
   \label{thm:free-cut-elim}
304 174 pbaillot
    Given a system  $\mathcal{S}$, any  $\mathcal{S}$-proof $\pi$ can be transformed into a $\system$-proof $\pi'$ with same end sequent and without any free-cut.
305 175 pbaillot
   \end{theorem}
306 179 pbaillot
   Now we want to deduce from that theorem a normal form property for proofs of certain formulas. But before that let us define some particular classes of sequents and proofs.
307 179 pbaillot
308 179 pbaillot
   Say that a sequent $\Gamma \seqar \Delta$ is \textit{well-typed} if for any free variable $x$ occurring in $\Gamma$ or $\Delta$, there exists a formula $\safe(x)$ or $\normal(x)$ in $\Gamma$. A proof is well-typed if its sequence are.
309 179 pbaillot
310 179 pbaillot
   \begin{lemma}\label{lem:welltyped}
311 181 pbaillot
   If a well-typed sequent $\Gamma \seqar \Delta$ is provable, then there exists $\vec u$  such that
312 181 pbaillot
 the sequent $\normal(\vec u), \Gamma \seqar \Delta$ admits a well-typed proof.
313 179 pbaillot
   \end{lemma}
314 181 pbaillot
   \patrick{It seems to me the statement had to be modified so as to prove the lemma. Maybe I misunderstand something.}
315 181 pbaillot
   \begin{proof}[Proof sketch]
316 181 pbaillot
   First by Thm \ref{thm:freecutelimination} we know that $\Gamma \seqar \Delta$ admits a proof $\pi$ without any free-cut. Let us then prove that $\pi$ can be transformed in a proof $\pi'$ of conclusion of the form  $\normal(\vec u), \Gamma \seqar \Delta$ and such that, for any sequent, if it is well-typed then its premises are well-typed.
317 181 pbaillot
318 181 pbaillot
   Observe first that by definition of $\arith^i$ and the absence of free cut, all quantifiers occurring in a formula of the proof are of one of the forms
319 181 pbaillot
   $\forall^{\safe}$,   $\exists^{\safe}$,  $\forall^{\normal}$,   $\exists^{\normal}$, and for the last two ones they are sharply bounded.
320 181 pbaillot
321 181 pbaillot
  Then, one can check that for all rules but the quantifier rules and the cut rule, if the conclusion is well-typed, then so are the two premises.  For the remaining rules, $\forall-r$ and $\exists-l$ are unproblematic, because of the observation above. Let us now examine the case of $\exists-r$, with a $\safe$ label, and the other rules can be treated in the same way. In the premise we get a formula $\safe(t) \cand A(t)$. Then what we do is that, if  $\vec u$ denote the free variables of $t$, we add to the context of all sequents of the proof $\normal(\vec u)$. We obtain in this way a valid proof new proof,  and the premises of the rule have become well-typed.
322 181 pbaillot
       \end{proof}
323 179 pbaillot
324 182 pbaillot
     \patrick{As mentioned after Def 14, I don't think that we can prove that the proofs we consider are equivalent to integer positive proofs, by arguing that negative occurrences $\neg \safe(t)$ could be replaced by 'false', by using the lemma above. Indeed even if for all its free variables we have $\safe(\vec x)$, $\normal(\vec u)$ on the l.h.s. of the sequent, it is not clear to me why that would prove $\safe(t)$. My proposition is thus to restrict 'by definition' of $\arith^i$ to integer positive formulas.}
325 179 pbaillot
326 179 pbaillot
 \begin{theorem}
327 179 pbaillot
   Assume the $\arith^i$ sequent calculus proves a closed formula $\forall \vec u^\normal . \forall \vec x^\safe . \exists y^\safe . A(\vec u ; \vec x , y)$. Then there exists a proof $\pi$ of the sequent
328 179 pbaillot
   $\normal(\vec u), \safe(\vec x) \seqar \exists y^\safe . A(\vec u ; \vec x , y)$ satisfying:
329 179 pbaillot
   \begin{enumerate}
330 179 pbaillot
    \item $\pi$  only contains  $\Sigma^\safe_{i}$ formulas,
331 179 pbaillot
    \item $\pi$ is a well-typed and integer-positive proof.
332 179 pbaillot
   \end{enumerate}
333 179 pbaillot
   \end{theorem}