root / CSL17 / soundness.tex @ 182
Historique | Voir | Annoter | Télécharger (3,91 ko)
1 | 166 | adas | \section{Soundness} |
---|---|---|---|
2 | 168 | adas | \label{sect:soundness} |
3 | 168 | adas | |
4 | 168 | adas | The main result of this section is the following: |
5 | 168 | adas | |
6 | 168 | adas | \begin{theorem} |
7 | 168 | adas | If $\arith^i$ proves $\forall \vec u^\normal . \forall \vec x^\safe . \exists y^\safe . A(\vec u ; \vec x , y)$ then there is a $\mubci{i-1}$ program $f(\vec u ; \vec x)$ such that $\Nat \models A(\vec u ; \vec x , f(\vec u ; \vec x))$. |
8 | 168 | adas | \end{theorem} |
9 | 168 | adas | |
10 | 171 | adas | |
11 | 172 | adas | |
12 | 172 | adas | The main problem for soundness is that we have predicates, for example equality, that take safe arguments in our theory but do not formally satisfy the polychecking lemma for $\mubc$ functions. |
13 | 172 | adas | For this we will use length-bounded witnessing, borrowing a similar idea from Bellantoni's previous work \cite{Bellantoni95}. |
14 | 172 | adas | |
15 | 172 | adas | \begin{definition} |
16 | 172 | adas | [Length bounded basic functions] |
17 | 172 | adas | We define \emph{length-bounded equality}, $\eq(l;x,y)$ as the characteristic function of the predicate: |
18 | 172 | adas | \[ |
19 | 172 | adas | x \mode l = y \mode l |
20 | 172 | adas | \] |
21 | 172 | adas | \end{definition} |
22 | 172 | adas | |
23 | 172 | adas | \anupam{Do we need the general form of length-boundedness? E.g. the $*$ functions from Bellantoni's paper? Put above if necessary. Otherwise just add sequence manipulation functions as necessary.} |
24 | 172 | adas | |
25 | 172 | adas | Notice that $\eq$ is a polymax bounded polyomial checking function on its normal input, and so can be added to $\mubc$ without problems. |
26 | 172 | adas | |
27 | 172 | adas | \begin{definition} |
28 | 172 | adas | [Length bounded characteristic functions] |
29 | 172 | adas | We define $\mubci{}$ programs $\charfn{}{A} (l , \vec u; \vec x)$, parametrised by a formula $A(\vec u ; \vec x)$, as follows. |
30 | 172 | adas | % If $A$ is a $\Pi_{i}$ formula then: |
31 | 172 | adas | \[ |
32 | 172 | adas | \begin{array}{rcl} |
33 | 176 | adas | \charfn{}{s\leq t} (l, \vec u ; \vec x, w) & \dfn & \leqfn(l;s,t) \\ |
34 | 172 | adas | \smallskip |
35 | 176 | adas | \charfn{}{s=t} (l, \vec u ; \vec x, w) & \dfn & \eq(l;s,t) \\ |
36 | 172 | adas | \smallskip |
37 | 172 | adas | \charfn{}{\neg A} (l, \vec u ; \vec x, w) & \dfn & \neg (;\charfn{}{A}(l , \vec u ; \vec x)) \\ |
38 | 172 | adas | \smallskip |
39 | 173 | adas | \charfn{}{A\cor B} (l, \vec u ; \vec x , w) & \dfn & \cor (; \charfn{}{A} (l, \vec u ; \vec x , w), \charfn{}{B} (\vec u ;\vec x, w) ) \\ |
40 | 172 | adas | \smallskip |
41 | 173 | adas | \charfn{}{A\cand B} (l, \vec u ; \vec x , w) & \dfn & \cand(; \charfn{}{A} (l, \vec u ; \vec x , w), \charfn{}{B} (\vec u ;\vec x, w) ) \\ |
42 | 172 | adas | \smallskip |
43 | 172 | adas | \charfn{}{\exists x^\safe . A(x)} (l, \vec u ;\vec x, w) & \dfn & \begin{cases} |
44 | 173 | adas | 1 & \exists x^\safe . \charfn{}{A(x)} (l, \vec u ;\vec x , x, w) = 1 \\ |
45 | 172 | adas | 0 & \text{otherwise} |
46 | 172 | adas | \end{cases} \\ |
47 | 172 | adas | \smallskip |
48 | 176 | adas | \charfn{}{\forall x^\safe . A(x)} (l, \vec u ;\vec x , w) & \dfn & |
49 | 172 | adas | \begin{cases} |
50 | 173 | adas | 0 & \exists x^\sigma. \charfn{}{ A(x)} (l, \vec u; \vec x , x) = 0 \\ |
51 | 172 | adas | 1 & \text{otherwise} |
52 | 172 | adas | \end{cases} |
53 | 172 | adas | \end{array} |
54 | 172 | adas | \] |
55 | 173 | adas | \end{definition} |
56 | 173 | adas | |
57 | 173 | adas | |
58 | 176 | adas | \begin{proposition} |
59 | 176 | adas | $\charfn{}{A} (l, \vec u ; \vec x)$ is the characteristic function of $A (\vec u \mode l ; \vec x \mode l)$. |
60 | 176 | adas | \end{proposition} |
61 | 176 | adas | |
62 | 173 | adas | \begin{definition} |
63 | 173 | adas | [Length bounded witness function] |
64 | 173 | adas | We now define $\Wit{\vec u ; \vec x}{A} (l , \vec u ; \vec x)$ for a $\Sigma_{i+1}$-formula $A$ with free variables amongst $\vec u; \vec x$. |
65 | 173 | adas | \[ |
66 | 173 | adas | \begin{array}{rcl} |
67 | 173 | adas | \Wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w) & \dfn & \charfn{}{A} (l, \vec u ; \vec x) \text{ if $A$ is $\Pi_i$} \\ |
68 | 173 | adas | \smallskip |
69 | 173 | adas | \Wit{\vec u ; \vec x}{A \cor B} (l,\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cor ( ; \Wit{\vec u ; \vec x}{A} (l,\vec u ; \vec x , \vec w^A) ,\Wit{\vec u ; \vec x}{B} (l,\vec u ; \vec x , \vec w^B) ) \\ |
70 | 173 | adas | \smallskip |
71 | 173 | adas | \Wit{\vec u ; \vec x}{A \cand B} (l,\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cand ( ; \Wit{\vec u ; \vec x}{A} (l,\vec u ; \vec x , \vec w^A) ,\Wit{\vec u ; \vec x}{B} (l,\vec u ; \vec x , \vec w^B) ) \\ |
72 | 173 | adas | \smallskip |
73 | 173 | adas | \Wit{\vec u ; \vec x}{\exists x^\safe . A(x)} (l,\vec u ; \vec x , \vec w , w) & \dfn & \Wit{\vec u ; \vec x , x}{A(x)} ( l,\vec u ; \vec x , w , \vec w ) |
74 | 173 | adas | \\ |
75 | 173 | adas | \smallskip |
76 | 173 | adas | \Wit{\vec u ; \vec x}{\forall u \leq |t(\vec u;)| . A(x)} (l , \vec u ; \vec x, w) & \dfn & |
77 | 173 | adas | \forall u \leq |t(\vec u;)| . \Wit{u , \vec u ; \vec x}{A(u)} (l, u , \vec u ; \vec x, \beta(u;w) ) |
78 | 173 | adas | \end{array} |
79 | 173 | adas | \] |
80 | 173 | adas | \end{definition} |
81 | 173 | adas | |
82 | 173 | adas | \anupam{may as well use a single witness variable since need it for sharply bounded quantifiers anyway.} |
83 | 173 | adas | |
84 | 173 | adas | \anupam{sharply bounded case obtained by sharply bounded lemma} |