root / CSL17 / soundness.tex @ 181
Historique | Voir | Annoter | Télécharger (3,91 ko)
1 |
\section{Soundness} |
---|---|
2 |
\label{sect:soundness} |
3 |
|
4 |
The main result of this section is the following: |
5 |
|
6 |
\begin{theorem} |
7 |
If $\arith^i$ proves $\forall \vec u^\normal . \forall \vec x^\safe . \exists y^\safe . A(\vec u ; \vec x , y)$ then there is a $\mubci{i-1}$ program $f(\vec u ; \vec x)$ such that $\Nat \models A(\vec u ; \vec x , f(\vec u ; \vec x))$. |
8 |
\end{theorem} |
9 |
|
10 |
|
11 |
|
12 |
The main problem for soundness is that we have predicates, for example equality, that take safe arguments in our theory but do not formally satisfy the polychecking lemma for $\mubc$ functions. |
13 |
For this we will use length-bounded witnessing, borrowing a similar idea from Bellantoni's previous work \cite{Bellantoni95}. |
14 |
|
15 |
\begin{definition} |
16 |
[Length bounded basic functions] |
17 |
We define \emph{length-bounded equality}, $\eq(l;x,y)$ as the characteristic function of the predicate: |
18 |
\[ |
19 |
x \mode l = y \mode l |
20 |
\] |
21 |
\end{definition} |
22 |
|
23 |
\anupam{Do we need the general form of length-boundedness? E.g. the $*$ functions from Bellantoni's paper? Put above if necessary. Otherwise just add sequence manipulation functions as necessary.} |
24 |
|
25 |
Notice that $\eq$ is a polymax bounded polyomial checking function on its normal input, and so can be added to $\mubc$ without problems. |
26 |
|
27 |
\begin{definition} |
28 |
[Length bounded characteristic functions] |
29 |
We define $\mubci{}$ programs $\charfn{}{A} (l , \vec u; \vec x)$, parametrised by a formula $A(\vec u ; \vec x)$, as follows. |
30 |
% If $A$ is a $\Pi_{i}$ formula then: |
31 |
\[ |
32 |
\begin{array}{rcl} |
33 |
\charfn{}{s\leq t} (l, \vec u ; \vec x, w) & \dfn & \leqfn(l;s,t) \\ |
34 |
\smallskip |
35 |
\charfn{}{s=t} (l, \vec u ; \vec x, w) & \dfn & \eq(l;s,t) \\ |
36 |
\smallskip |
37 |
\charfn{}{\neg A} (l, \vec u ; \vec x, w) & \dfn & \neg (;\charfn{}{A}(l , \vec u ; \vec x)) \\ |
38 |
\smallskip |
39 |
\charfn{}{A\cor B} (l, \vec u ; \vec x , w) & \dfn & \cor (; \charfn{}{A} (l, \vec u ; \vec x , w), \charfn{}{B} (\vec u ;\vec x, w) ) \\ |
40 |
\smallskip |
41 |
\charfn{}{A\cand B} (l, \vec u ; \vec x , w) & \dfn & \cand(; \charfn{}{A} (l, \vec u ; \vec x , w), \charfn{}{B} (\vec u ;\vec x, w) ) \\ |
42 |
\smallskip |
43 |
\charfn{}{\exists x^\safe . A(x)} (l, \vec u ;\vec x, w) & \dfn & \begin{cases} |
44 |
1 & \exists x^\safe . \charfn{}{A(x)} (l, \vec u ;\vec x , x, w) = 1 \\ |
45 |
0 & \text{otherwise} |
46 |
\end{cases} \\ |
47 |
\smallskip |
48 |
\charfn{}{\forall x^\safe . A(x)} (l, \vec u ;\vec x , w) & \dfn & |
49 |
\begin{cases} |
50 |
0 & \exists x^\sigma. \charfn{}{ A(x)} (l, \vec u; \vec x , x) = 0 \\ |
51 |
1 & \text{otherwise} |
52 |
\end{cases} |
53 |
\end{array} |
54 |
\] |
55 |
\end{definition} |
56 |
|
57 |
|
58 |
\begin{proposition} |
59 |
$\charfn{}{A} (l, \vec u ; \vec x)$ is the characteristic function of $A (\vec u \mode l ; \vec x \mode l)$. |
60 |
\end{proposition} |
61 |
|
62 |
\begin{definition} |
63 |
[Length bounded witness function] |
64 |
We now define $\Wit{\vec u ; \vec x}{A} (l , \vec u ; \vec x)$ for a $\Sigma_{i+1}$-formula $A$ with free variables amongst $\vec u; \vec x$. |
65 |
\[ |
66 |
\begin{array}{rcl} |
67 |
\Wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w) & \dfn & \charfn{}{A} (l, \vec u ; \vec x) \text{ if $A$ is $\Pi_i$} \\ |
68 |
\smallskip |
69 |
\Wit{\vec u ; \vec x}{A \cor B} (l,\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cor ( ; \Wit{\vec u ; \vec x}{A} (l,\vec u ; \vec x , \vec w^A) ,\Wit{\vec u ; \vec x}{B} (l,\vec u ; \vec x , \vec w^B) ) \\ |
70 |
\smallskip |
71 |
\Wit{\vec u ; \vec x}{A \cand B} (l,\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cand ( ; \Wit{\vec u ; \vec x}{A} (l,\vec u ; \vec x , \vec w^A) ,\Wit{\vec u ; \vec x}{B} (l,\vec u ; \vec x , \vec w^B) ) \\ |
72 |
\smallskip |
73 |
\Wit{\vec u ; \vec x}{\exists x^\safe . A(x)} (l,\vec u ; \vec x , \vec w , w) & \dfn & \Wit{\vec u ; \vec x , x}{A(x)} ( l,\vec u ; \vec x , w , \vec w ) |
74 |
\\ |
75 |
\smallskip |
76 |
\Wit{\vec u ; \vec x}{\forall u \leq |t(\vec u;)| . A(x)} (l , \vec u ; \vec x, w) & \dfn & |
77 |
\forall u \leq |t(\vec u;)| . \Wit{u , \vec u ; \vec x}{A(u)} (l, u , \vec u ; \vec x, \beta(u;w) ) |
78 |
\end{array} |
79 |
\] |
80 |
\end{definition} |
81 |
|
82 |
\anupam{may as well use a single witness variable since need it for sharply bounded quantifiers anyway.} |
83 |
|
84 |
\anupam{sharply bounded case obtained by sharply bounded lemma} |