Statistiques
| Révision :

root / CSL17 / arithmetic.tex @ 181

Historique | Voir | Annoter | Télécharger (16,36 ko)

1 166 adas
\section{An arithmetic for the polynomial hierarchy}
2 179 pbaillot
Our base language is $\{ 0, \succ{} , + , \times, \smsh , |\cdot| , \leq \}$. We use classical logic connectives $\neg$, $\cand$, $\cor$, $\forall$, $\exists$. The formula $A \cimp B$ will be a notation for $\neg A \cor B$.
3 156 adas
4 171 adas
The $\basic$ axioms are as follows:
5 171 adas
\[
6 171 adas
\begin{array}{l}
7 171 adas
\safe (0) \\
8 172 adas
\forall x^\safe . \safe (\succ{} x) \\
9 172 adas
\forall x^\safe . 0 \neq \succ{} (x) \\
10 172 adas
\forall x^\safe , y^\safe . (\succ{} x = \succ{} y \cimp x = y) \\
11 176 adas
\forall x^\safe . (x = 0 \cor \exists y^\safe.\  x = \succ{} y   )\\
12 176 adas
\forall x^\safe, y^\safe . \safe(x+y)\\
13 176 adas
\forall u^\normal, x^\safe . \safe(u\times x) \\
14 179 pbaillot
\forall u^\normal , v^\normal . \safe (u \smsh v)\\
15 180 pbaillot
\forall u^\normal \safe(u)
16 171 adas
\end{array}
17 171 adas
\]
18 172 adas
\anupam{in fact, we use essentially the same language, so just take Buss' Basic axioms after proper typing. Should also add the symbol $\hlf{\cdot}$ for binary predecessor then we have the full language of bounded arithmetic.}
19 168 adas
20 172 adas
21 179 pbaillot
Notation: if $\vec t=t_0,\dots, t_k$, we will denote as $\safe(\vec t)$ the sequence of formulas $\safe(t_0),\dots, \safe(t_k)$. Similarly for $\normal(\vec t)$.
22 179 pbaillot
23 172 adas
\begin{definition}
24 172 adas
[Derived functions and notations]
25 172 adas
We write $1,2,3,\dots$ for the terms $\succ{} 0, \succ{} \succ{} 0, \succ{} \succ{} \succ{} 0 \dots$, and frequently omit the $\times$ symbol.
26 172 adas
We define the functions $\succ 0 x , \succ 1 x$ as $2 x$ and $2x +1$ respectively.
27 176 adas
28 176 adas
Need $bit$, $\beta$ , $\pair{}{}{}$.
29 172 adas
\end{definition}
30 172 adas
31 157 adas
(Here use a variation of S12 with sharply bounded quantifiers and safe quantifiers)
32 157 adas
33 157 adas
Use base theory + sharply bounded quantifiers.
34 157 adas
35 157 adas
36 168 adas
37 168 adas
38 157 adas
\begin{definition}
39 157 adas
[Quantifier hierarchy]
40 176 adas
$\Sigma^\safe_0 = \Pi^\safe_0 $ is the set of formulae whose only quantifiers are sharply bounded.
41 176 adas
We define $\Sigma^\safe_{i+1}$ as the closure of $\Pi^\safe_i $ under $\cor, \cand $, safe existentials and sharply bounded quantifiers.
42 176 adas
We define $\Pi^\safe_{i+1}$ as the closure of $\Sigma^\safe_i $ under $\cor, \cand $, safe universals and sharply bounded quantifiers.
43 157 adas
\end{definition}
44 157 adas
45 168 adas
46 168 adas
\anupam{Collection principles for prenexing? Otherwise need to add closure under sharply bounded quantifiers.}
47 177 pbaillot
\begin{definition}\label{def:polynomialinduction}
48 177 pbaillot
[Polynomial induction]
49 177 pbaillot
The \emph{polynomial induction} axiom schema, $\pind$, consists of the following axioms,
50 177 pbaillot
\[
51 177 pbaillot
A(0)
52 177 pbaillot
\cimp (\forall x^{\normal} . ( A(x) \cimp A(\succ{0} x) ) )
53 177 pbaillot
\cimp  (\forall x^{\normal} . ( A(x) \cimp A(\succ{1} x) ) )
54 177 pbaillot
\cimp  \forall x^{\normal} . A(x)
55 177 pbaillot
\]
56 177 pbaillot
for each formula $A(x)$.
57 168 adas
58 177 pbaillot
For a class $\Xi$ of formulae, $\cax{\Xi}{\pind}$ denotes the set of induction axioms when $A(x) \in \Xi$.
59 168 adas
60 177 pbaillot
%We write $I\Xi$ to denote the theory consisting of $\basic$ and $\cax{\Xi}{\ind}$.
61 177 pbaillot
\end{definition}
62 177 pbaillot
63 177 pbaillot
64 178 pbaillot
\begin{definition}\label{def:ariththeory}
65 166 adas
Define the theory $\arith^i$ consisting of the following axioms:
66 166 adas
\begin{itemize}
67 166 adas
	\item $\basic$;
68 166 adas
	\item $\cpind{\Sigma^\safe_i } $:
69 166 adas
\end{itemize}
70 180 pbaillot
and an inference rule, called $\rais$, for closed formulas $\exists y^\normal . A$:
71 168 adas
\[
72 168 adas
 \dfrac{\forall \vec x^\normal . \exists  y^\safe .  A }{ \forall \vec x^\normal .\exists y^\normal . A}
73 168 adas
\]
74 180 pbaillot
%\patrick{For $\forall \vec x^\normal . \exists  y^\safe .  A$ closed ?}
75 157 adas
\end{definition}
76 168 adas
\anupam{In induction,for inductive cases, need $u\neq 0$ for $\succ 0$ case.}
77 157 adas
78 157 adas
\begin{lemma}
79 157 adas
[Sharply bounded lemma]
80 157 adas
Let $f_A$ be the characteristic function of a predicate $A(u , \vec u ; \vec x)$.
81 157 adas
Then the characteristic functions of $\forall u \prefix v . A(u,\vec u ; \vec x)$ and $\exists u \prefix v . A(u , \vec u ; \vec x)$ are in $\bc(f_A)$.
82 157 adas
\end{lemma}
83 157 adas
\begin{proof}
84 157 adas
	We give the $\forall$ case, the $\exists$ case being dual.
85 157 adas
	The characteristic function $f(v , \vec u ; \vec x)$ is defined by predicative recursion on $v$ as:
86 157 adas
	\[
87 157 adas
	\begin{array}{rcl}
88 157 adas
	f(0, \vec u ; \vec x) & \dfn & f_A (0 , \vec u ; \vec x) \\
89 157 adas
	f(\succ i v , \vec u ; \vec x) & \dfn & \cond ( ; f_A (\succ i v, \vec u ; \vec x) , 0 , f(v , \vec u ; \vec x) )
90 157 adas
	\end{array}
91 157 adas
	\]
92 157 adas
\end{proof}
93 157 adas
94 157 adas
Notice that $\prefix$ suffices to encode usual sharply bounded inequalities,
95 168 adas
since $\forall u \leq |t| . A(u , \vec u ; \vec x) \ciff \forall u \prefix t . A(|u|, \vec u ; \vec x)$.
96 168 adas
97 168 adas
98 168 adas
\subsection{Graphs of some basic functions}
99 168 adas
Todo: $+1$,
100 168 adas
101 168 adas
\subsection{Encoding sequences in the arithmetic}
102 168 adas
\todo{}
103 168 adas
104 168 adas
\anupam{Assume we have a $\Sigma^\safe_1$ predicate $\beta(i,x,y)$, expressing that the $i$th element of the sequence $x$ is $y$, such that $\arith^1 \proves \forall i^\normal , x^\safe . \exists ! y^\safe . \beta (i,x,y)$.}
105 168 adas
106 168 adas
107 168 adas
\subsection{A sequent calculus presentation}
108 168 adas
109 174 pbaillot
\begin{figure}
110 174 pbaillot
\[
111 174 pbaillot
\small
112 174 pbaillot
\begin{array}{l}
113 174 pbaillot
\begin{array}{cccc}
114 174 pbaillot
%\vlinf{\lefrul{\bot}}{}{p, \lnot{p} \seqar }{}
115 174 pbaillot
%& \vlinf{\id}{}{p \seqar p}{}
116 174 pbaillot
%& \vlinf{\rigrul{\bot}}{}{\seqar p, \lnot{p}}{}
117 174 pbaillot
%& \vliinf{\cut}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta, A }{\Sigma, A \seqar \Pi}
118 180 pbaillot
 \vlinf{id}{}{\Gamma, p \seqar p, \Delta }{}
119 174 pbaillot
& \vliinf{cut}{}{\Gamma \seqar \Delta }{ \Gamma \seqar \Delta, A }{\Gamma, A \seqar \Delta}
120 174 pbaillot
&&
121 174 pbaillot
\\
122 174 pbaillot
\noalign{\bigskip}
123 174 pbaillot
%\noalign{\bigskip}
124 174 pbaillot
\vliinf{\lefrul{\cor}}{}{\Gamma, A \cor B \seqar \Delta}{\Gamma , A \seqar \Delta}{\Gamma, B \seqar \Delta}
125 174 pbaillot
&
126 174 pbaillot
\vlinf{\lefrul{\cand}}{}{\Gamma, A\cand B \seqar \Delta}{\Gamma, A , B \seqar \Delta}
127 174 pbaillot
&
128 174 pbaillot
%\vlinf{\lefrul{\laand}}{}{\Gamma, A\laand B \seqar \Delta}{\Gamma, B \seqar \Delta}
129 174 pbaillot
%\quad
130 174 pbaillot
\vlinf{\rigrul{\cor}}{}{\Gamma \seqar \Delta, A \cor B}{\Gamma \seqar \Delta, A, B}
131 174 pbaillot
&
132 174 pbaillot
%\vlinf{\rigrul{\laor}}{}{\Gamma \seqar \Delta, A\laor B}{\Gamma \seqar \Delta, B}
133 174 pbaillot
%\quad
134 174 pbaillot
\vliinf{\rigrul{\cand}}{}{\Gamma \seqar \Delta, A \cand B }{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, B}
135 174 pbaillot
\\
136 174 pbaillot
\noalign{\bigskip}
137 179 pbaillot
138 174 pbaillot
\vlinf{\lefrul{\neg}}{}{\Gamma, \neg A \seqar \Delta}{\Gamma \seqar A, \Delta}
139 174 pbaillot
&
140 174 pbaillot
141 179 pbaillot
\vlinf{\lefrul{\neg}}{}{\Gamma, \seqar \neg A, \Delta}{\Gamma, A \seqar  \Delta}
142 174 pbaillot
&
143 179 pbaillot
&
144 179 pbaillot
%\vliinf{\lefrul{\cimp}}{}{\Gamma, A \cimp B \seqar \Delta}{\Gamma \seqar A, \Delta}{\Gamma, B \seqar \Delta}
145 179 pbaillot
%&
146 179 pbaillot
%
147 179 pbaillot
%\vlinf{\rigrul{\cimp}}{}{\Gamma \seqar \Delta, A \cimp B}{\Gamma, A \seqar \Delta,  B}
148 174 pbaillot
149 179 pbaillot
150 174 pbaillot
\\
151 174 pbaillot
152 174 pbaillot
\noalign{\bigskip}
153 174 pbaillot
%\text{Structural:} & & & \\
154 174 pbaillot
%\noalign{\bigskip}
155 174 pbaillot
156 180 pbaillot
%\vlinf{\lefrul{\wk}}{}{\Gamma, A \seqar \Delta}{\Gamma \seqar \Delta}
157 180 pbaillot
%&
158 174 pbaillot
\vlinf{\lefrul{\cntr}}{}{\Gamma, A \seqar \Delta}{\Gamma, A, A \seqar \Delta}
159 180 pbaillot
%&
160 180 pbaillot
%\vlinf{\rigrul{\wk}}{}{\Gamma \seqar \Delta, A }{\Gamma \seqar \Delta}
161 174 pbaillot
&
162 180 pbaillot
\vlinf{\rigrul{\cntr}}{}{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, A, A}
163 174 pbaillot
&
164 180 pbaillot
&
165 174 pbaillot
\\
166 174 pbaillot
\noalign{\bigskip}
167 174 pbaillot
\vlinf{\lefrul{\exists}}{}{\Gamma, \exists x . A(x) \seqar \Delta}{\Gamma, A(a) \seqar \Delta}
168 174 pbaillot
&
169 174 pbaillot
\vlinf{\lefrul{\forall}}{}{\Gamma, \forall x. A(x) \seqar \Delta}{\Gamma, A(t) \seqar \Delta}
170 174 pbaillot
&
171 174 pbaillot
\vlinf{\rigrul{\exists}}{}{\Gamma \seqar \Delta, \exists x . A(x)}{ \Gamma \seqar \Delta, A(t)}
172 174 pbaillot
&
173 174 pbaillot
\vlinf{\rigrul{\forall}}{}{\Gamma \seqar \Delta, \forall x . A(x)}{ \Gamma \seqar \Delta, A(a) } \\
174 174 pbaillot
%\noalign{\bigskip}
175 174 pbaillot
% \vliinf{mix}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta}{\Sigma \seqar \Pi} &&&
176 174 pbaillot
\end{array}
177 174 pbaillot
\end{array}
178 174 pbaillot
\]
179 174 pbaillot
\caption{Sequent calculus rules}\label{fig:sequentcalculus}
180 174 pbaillot
\end{figure}
181 174 pbaillot
 We denote sequence as $\Gamma \seqar \Delta$ where $\Gamma$, $\Delta$ are multi sets of formulas. The sequent calculus rules are displayed on Fig. \ref{fig:sequentcalculus},  where $p$ is atomic, $i \in \{ 1,2 \}$, $t$ is a term and the eigenvariable $a$ does not occur free in $\Gamma$ or $\Delta$.
182 174 pbaillot
183 174 pbaillot
We consider \emph{systems} of `nonlogical' rules extending this sequent calculus, which we write as follows,
184 174 pbaillot
 \[
185 174 pbaillot
 \begin{array}{cc}
186 174 pbaillot
    \vlinf{(R)}{}{ \Gamma , \Sigma' \seqar \Delta' , \Pi  }{ \{\Gamma , \Sigma_i \seqar \Delta_i , \Pi \}_{i \in I} }
187 174 pbaillot
\end{array}
188 174 pbaillot
\]
189 174 pbaillot
 where, in each rule $(R)$, $I$ is a finite possibly empty set (indicating the number of premises) and we assume the following conditions and terminology:
190 174 pbaillot
 \begin{enumerate}
191 174 pbaillot
 \item In $(R)$ the formulas of $\Sigma', \Delta'$  are called \textit{principal}, those of $\Sigma_i, \Delta_i$ are called \textit{active}, and those of
192 174 pbaillot
$ \Gamma,  \Pi$ are called \textit{context formulas}.
193 174 pbaillot
\item Each rule $(R)$ comes with a list $a_1$, \dots, $a_k$ of eigenvariables such that each $a_j$ appears in exactly one $\Sigma_i, \Delta_i$ (so in some active formulas of exactly one premise)  and does not appear in  $\Sigma', \Delta'$ or $ \Gamma,  \Pi$.
194 174 pbaillot
    \item A system $\mathcal{S}$ of rules must be closed under substitutions of free variables by terms (where these substitutions do not contain the eigenvariables $a_j$ in their domain or codomain).
195 174 pbaillot
   \end{enumerate}
196 174 pbaillot
197 174 pbaillot
%The distinction between modal and nonmodal formulae in $(R)$ induces condition 1
198 174 pbaillot
 Conditions 2 and 3 are standard requirements for nonlogical rules, independently of the logical setting, cf.\ \cite{Beckmann11}. Condition 2 reflects the intuitive idea that, in our nonlogical rules, we often need a notion of \textit{bound} variables in the active formulas (typically for induction rules), for which we rely on eigenvariables. Condition 3 is needed for our proof system to admit elimination of cuts on quantified formulas.
199 174 pbaillot
200 177 pbaillot
%\begin{definition}
201 177 pbaillot
%[Polynomial induction]
202 177 pbaillot
%The \emph{polynomial induction} axiom schema, $\pind$, consists of the following axioms,
203 177 pbaillot
%\[
204 177 pbaillot
%A(0)
205 177 pbaillot
%\cimp (\forall x^{\normal} . ( A(x) \cimp A(\succ{0} x) ) )
206 177 pbaillot
%\cimp  (\forall x^{\normal} . ( A(x) \cimp A(\succ{1} x) ) )
207 177 pbaillot
%\cimp  \forall x^{\normal} . A(x)
208 177 pbaillot
%\]
209 177 pbaillot
%for each formula $A(x)$.
210 177 pbaillot
%
211 177 pbaillot
%For a class $\Xi$ of formulae, $\cax{\Xi}{\pind}$ denotes the set of induction axioms when $A(x) \in \Xi$.
212 177 pbaillot
%
213 177 pbaillot
%We write $I\Xi$ to denote the theory consisting of $\basic$ and $\cax{\Xi}{\ind}$.
214 177 pbaillot
%\end{definition}
215 174 pbaillot
216 177 pbaillot
As an example any axiom can be represented by such a nonlogical rule $(R)$, with no premise ($I=\emptyset$), $\Delta'$ equal to the axiom and $\Gamma=\Sigma'=\Pi$. For instance the axiom $\pind$ of Def. \ref{def:polynomialinduction}.
217 177 pbaillot
218 177 pbaillot
Actually  $\pind$ is equivalent to the following rule:
219 177 pbaillot
\begin{equation}
220 177 pbaillot
\label{eqn:ind-rule}
221 177 pbaillot
\small
222 177 pbaillot
\vliinf{\pind}{}{ \normal(t) , \Gamma , A(0) \seqar A(t), \Delta }{ \normal(a) , \Gamma, A(a) \seqar A(\succ{0} a) , \Delta }{ \normal(a) , \Gamma, A(a) \seqar A(\succ{1} a) , \Delta  }
223 177 pbaillot
\end{equation}
224 177 pbaillot
where $I=2$ and  in all cases, $t$ varies over arbitrary terms and the eigenvariable $a$ does not occur in the lower sequent of the $\pind$ rule.
225 177 pbaillot
226 178 pbaillot
Similarly the $\rais$ inference rule of Def. \ref{def:ariththeory} is represented by the nonlogical rule:
227 177 pbaillot
 \[
228 177 pbaillot
 \begin{array}{cc}
229 179 pbaillot
    \vlinf{\rais}{}{  \normal(t_1), \dots, \normal(t_k) \seqar  \exists  y^\normal .  A }{  \normal(t_1), \dots, \normal(t_k) \seqar \exists  y^\safe .  A}
230 177 pbaillot
\end{array}
231 177 pbaillot
\]
232 179 pbaillot
233 179 pbaillot
%\patrick{In fact, I think we rather need the following nonlogical rule, which implies the previous one but is I guess more general:
234 179 pbaillot
%\[
235 179 pbaillot
% \begin{array}{cc}
236 179 pbaillot
%    \vlinf{\rais}{}{  \normal(t_1), \dots, \normal(t_k) \seqar  \normal(t) }{  \normal(t_1), \dots, \normal(t_k) \seqar \safe(t)}
237 179 pbaillot
%\end{array}
238 179 pbaillot
%\]
239 179 pbaillot
%}
240 179 pbaillot
241 179 pbaillot
The $\basic$ axioms are equivalent to the following nonlogical rules, that we will also designate by $\basic$:
242 179 pbaillot
\[
243 179 pbaillot
\small
244 179 pbaillot
\begin{array}{l}
245 179 pbaillot
\begin{array}{cccc}
246 179 pbaillot
\vlinf{}{}{\seqar \safe (0)}{}&
247 179 pbaillot
\vlinf{}{}{\safe(t) \seqar \safe(\succ{} t)}{}&
248 179 pbaillot
\vlinf{}{}{ \safe (t)   \seqar 0 \neq \succ{} t}{} &
249 179 pbaillot
\vlinf{}{}{\safe (s) , \safe (t)  , \succ{} s = \succ{} t\seqar s = t }{}\\
250 179 pbaillot
\end{array}
251 179 pbaillot
\\
252 179 pbaillot
\vlinf{}{}{\safe (t) \seqar t = 0 \cor \exists y^\safe . t = \succ{} y  }{}
253 179 pbaillot
\qquad
254 179 pbaillot
\vlinf{}{}{\safe(s), \safe(t) \seqar \safe(s+t) }{}\\
255 179 pbaillot
\vlinf{}{}{\normal (s), \safe(t) \seqar \safe(s \times t)  }{}
256 179 pbaillot
\qquad
257 179 pbaillot
\vlinf{}{}{\normal (s), \normal(t) \seqar \safe(s \smsh t)  }{}\\
258 180 pbaillot
\vlinf{}{}{\normal(t) \seqar \safe(t)  }{}
259 179 pbaillot
\end{array}
260 179 pbaillot
\]
261 179 pbaillot
262 179 pbaillot
 The sequent calculus for $\arith^i$ is that of Fig. \ref{fig:sequentcalculus} extended with the $\basic$,  $\cpind{\Sigma^\safe_i } $ and $\rais$ nonlogical rules.
263 179 pbaillot
264 179 pbaillot
 \begin{lemma}
265 179 pbaillot
 For any term $t$, its free variables can be split in two sets $\vec{x}$ and $\vec{y}$ such  that the sequent $\normal(\vec x), \safe(\vec y) \seqar \safe(t)$ is provable.
266 179 pbaillot
 \end{lemma}
267 179 pbaillot
268 168 adas
\subsection{Free-cut free normal form of proofs}
269 174 pbaillot
\todo{State theorem, with references (Takeuti, Cook-Nguyen) and present the important corollaries for this work.}
270 175 pbaillot
271 174 pbaillot
Since our nonlogical rules may have many principal formulae on which cuts may be anchored, we need a slightly more general notion of principality.
272 174 pbaillot
    \begin{definition}\label{def:anchoredcut}
273 174 pbaillot
  We define the notions of \textit{hereditarily principal formula} and \textit{anchored cut} in a $\system$-proof, for a system $\system$, by mutual induction as follows:
274 174 pbaillot
  \begin{itemize}
275 174 pbaillot
  \item A formula $A$ in a sequent $\Gamma \seqar \Delta$ is \textit{hereditarily principal} for a rule instance (S) if either (i) the sequent is in the conclusion of (S) and $A$ is principal in it, or
276 174 pbaillot
(ii)  the sequent is in the conclusion of an anchored cut, the direct ancestor of $A$ in the corresponding premise is hereditarily principal for the rule instance (S), and the rule (S) is nonlogical.
277 174 pbaillot
  \item A cut-step is an \textit{anchored cut} if the two occurrences of its cut-formula $A$ in each premise are hereditarily principal for nonlogical steps, or one is hereditarily principal for a nonlogical step and the other one is principal for a logical step.
278 174 pbaillot
  \end{itemize}
279 174 pbaillot
     A cut which is not anchored will also be called a \textit{free-cut}.
280 174 pbaillot
  \end{definition}
281 174 pbaillot
  As a consequence of this definition, an anchored cut on a formula $A$ has the following properties:
282 174 pbaillot
  \begin{itemize}
283 174 pbaillot
  \item At least one of the two premises of the cut has above it a sub-branch of the proof which starts (top-down) with a nonlogical step (R) with $A$ as one of its principal formulas, and then a sequence of anchored cuts in which $A$ is part of the context.
284 174 pbaillot
  \item The other premise is either of the same form or is a logical step with principal formula $A$.
285 174 pbaillot
  \end{itemize}
286 174 pbaillot
287 174 pbaillot
   Now we have (see \cite{Takeuti87}):
288 174 pbaillot
   \begin{theorem}
289 179 pbaillot
   [Free-cut elimination]\label{thm:freecutelimination}
290 174 pbaillot
   \label{thm:free-cut-elim}
291 174 pbaillot
    Given a system  $\mathcal{S}$, any  $\mathcal{S}$-proof $\pi$ can be transformed into a $\system$-proof $\pi'$ with same end sequent and without any free-cut.
292 175 pbaillot
   \end{theorem}
293 179 pbaillot
   Now we want to deduce from that theorem a normal form property for proofs of certain formulas. But before that let us define some particular classes of sequents and proofs.
294 179 pbaillot
295 179 pbaillot
   Say that a sequent $\Gamma \seqar \Delta$ is \textit{well-typed} if for any free variable $x$ occurring in $\Gamma$ or $\Delta$, there exists a formula $\safe(x)$ or $\normal(x)$ in $\Gamma$. A proof is well-typed if its sequence are.
296 179 pbaillot
297 179 pbaillot
   \begin{lemma}\label{lem:welltyped}
298 181 pbaillot
   If a well-typed sequent $\Gamma \seqar \Delta$ is provable, then there exists $\vec u$  such that
299 181 pbaillot
 the sequent $\normal(\vec u), \Gamma \seqar \Delta$ admits a well-typed proof.
300 179 pbaillot
   \end{lemma}
301 181 pbaillot
   \patrick{It seems to me the statement had to be modified so as to prove the lemma. Maybe I misunderstand something.}
302 181 pbaillot
   \begin{proof}[Proof sketch]
303 181 pbaillot
   First by Thm \ref{thm:freecutelimination} we know that $\Gamma \seqar \Delta$ admits a proof $\pi$ without any free-cut. Let us then prove that $\pi$ can be transformed in a proof $\pi'$ of conclusion of the form  $\normal(\vec u), \Gamma \seqar \Delta$ and such that, for any sequent, if it is well-typed then its premises are well-typed.
304 181 pbaillot
305 181 pbaillot
   Observe first that by definition of $\arith^i$ and the absence of free cut, all quantifiers occurring in a formula of the proof are of one of the forms
306 181 pbaillot
   $\forall^{\safe}$,   $\exists^{\safe}$,  $\forall^{\normal}$,   $\exists^{\normal}$, and for the last two ones they are sharply bounded.
307 181 pbaillot
308 181 pbaillot
  Then, one can check that for all rules but the quantifier rules and the cut rule, if the conclusion is well-typed, then so are the two premises.  For the remaining rules, $\forall-r$ and $\exists-l$ are unproblematic, because of the observation above. Let us now examine the case of $\exists-r$, with a $\safe$ label, and the other rules can be treated in the same way. In the premise we get a formula $\safe(t) \cand A(t)$. Then what we do is that, if  $\vec u$ denote the free variables of $t$, we add to the context of all sequents of the proof $\normal(\vec u)$. We obtain in this way a valid proof new proof,  and the premises of the rule have become well-typed.
309 181 pbaillot
       \end{proof}
310 179 pbaillot
311 179 pbaillot
     \patrick{ TODO: define integer-positive sequents and proofs.}
312 179 pbaillot
313 179 pbaillot
 \begin{theorem}
314 179 pbaillot
   Assume the $\arith^i$ sequent calculus proves a closed formula $\forall \vec u^\normal . \forall \vec x^\safe . \exists y^\safe . A(\vec u ; \vec x , y)$. Then there exists a proof $\pi$ of the sequent
315 179 pbaillot
   $\normal(\vec u), \safe(\vec x) \seqar \exists y^\safe . A(\vec u ; \vec x , y)$ satisfying:
316 179 pbaillot
   \begin{enumerate}
317 179 pbaillot
    \item $\pi$  only contains  $\Sigma^\safe_{i}$ formulas,
318 179 pbaillot
    \item $\pi$ is a well-typed and integer-positive proof.
319 179 pbaillot
   \end{enumerate}
320 179 pbaillot
   \end{theorem}