Statistiques
| Révision :

root / CSL17 / arithmetic.tex @ 180

Historique | Voir | Annoter | Télécharger (15,18 ko)

1
\section{An arithmetic for the polynomial hierarchy}
2
Our base language is $\{ 0, \succ{} , + , \times, \smsh , |\cdot| , \leq \}$. We use classical logic connectives $\neg$, $\cand$, $\cor$, $\forall$, $\exists$. The formula $A \cimp B$ will be a notation for $\neg A \cor B$.
3

    
4
The $\basic$ axioms are as follows:
5
\[
6
\begin{array}{l}
7
\safe (0) \\
8
\forall x^\safe . \safe (\succ{} x) \\
9
\forall x^\safe . 0 \neq \succ{} (x) \\
10
\forall x^\safe , y^\safe . (\succ{} x = \succ{} y \cimp x = y) \\
11
\forall x^\safe . (x = 0 \cor \exists y^\safe.\  x = \succ{} y   )\\
12
\forall x^\safe, y^\safe . \safe(x+y)\\
13
\forall u^\normal, x^\safe . \safe(u\times x) \\
14
\forall u^\normal , v^\normal . \safe (u \smsh v)\\
15
\forall u^\normal \safe(u) 
16
\end{array}
17
\]
18
\anupam{in fact, we use essentially the same language, so just take Buss' Basic axioms after proper typing. Should also add the symbol $\hlf{\cdot}$ for binary predecessor then we have the full language of bounded arithmetic.}
19

    
20

    
21
Notation: if $\vec t=t_0,\dots, t_k$, we will denote as $\safe(\vec t)$ the sequence of formulas $\safe(t_0),\dots, \safe(t_k)$. Similarly for $\normal(\vec t)$.
22
  
23
\begin{definition}
24
[Derived functions and notations]
25
We write $1,2,3,\dots$ for the terms $\succ{} 0, \succ{} \succ{} 0, \succ{} \succ{} \succ{} 0 \dots$, and frequently omit the $\times$ symbol.
26
We define the functions $\succ 0 x , \succ 1 x$ as $2 x$ and $2x +1$ respectively.
27

    
28
Need $bit$, $\beta$ , $\pair{}{}{}$.
29
\end{definition}
30

    
31
(Here use a variation of S12 with sharply bounded quantifiers and safe quantifiers)
32

    
33
Use base theory + sharply bounded quantifiers.
34

    
35

    
36

    
37

    
38
\begin{definition}
39
[Quantifier hierarchy]
40
$\Sigma^\safe_0 = \Pi^\safe_0 $ is the set of formulae whose only quantifiers are sharply bounded.
41
We define $\Sigma^\safe_{i+1}$ as the closure of $\Pi^\safe_i $ under $\cor, \cand $, safe existentials and sharply bounded quantifiers.
42
We define $\Pi^\safe_{i+1}$ as the closure of $\Sigma^\safe_i $ under $\cor, \cand $, safe universals and sharply bounded quantifiers.
43
\end{definition}
44

    
45

    
46
\anupam{Collection principles for prenexing? Otherwise need to add closure under sharply bounded quantifiers.}
47
\begin{definition}\label{def:polynomialinduction}
48
[Polynomial induction]
49
The \emph{polynomial induction} axiom schema, $\pind$, consists of the following axioms,
50
\[
51
A(0) 
52
\cimp (\forall x^{\normal} . ( A(x) \cimp A(\succ{0} x) ) )
53
\cimp  (\forall x^{\normal} . ( A(x) \cimp A(\succ{1} x) ) ) 
54
\cimp  \forall x^{\normal} . A(x)
55
\]
56
for each formula $A(x)$.
57

    
58
For a class $\Xi$ of formulae, $\cax{\Xi}{\pind}$ denotes the set of induction axioms when $A(x) \in \Xi$. 
59

    
60
%We write $I\Xi$ to denote the theory consisting of $\basic$ and $\cax{\Xi}{\ind}$.
61
\end{definition}
62

    
63

    
64
\begin{definition}\label{def:ariththeory}
65
Define the theory $\arith^i$ consisting of the following axioms:
66
\begin{itemize}
67
	\item $\basic$;
68
	\item $\cpind{\Sigma^\safe_i } $:
69
\end{itemize}
70
and an inference rule, called $\rais$, for closed formulas $\exists y^\normal . A$:
71
\[
72
 \dfrac{\forall \vec x^\normal . \exists  y^\safe .  A }{ \forall \vec x^\normal .\exists y^\normal . A}
73
\]
74
%\patrick{For $\forall \vec x^\normal . \exists  y^\safe .  A$ closed ?} 
75
\end{definition}
76
\anupam{In induction,for inductive cases, need $u\neq 0$ for $\succ 0$ case.}
77

    
78
\begin{lemma}
79
[Sharply bounded lemma]
80
Let $f_A$ be the characteristic function of a predicate $A(u , \vec u ; \vec x)$.
81
Then the characteristic functions of $\forall u \prefix v . A(u,\vec u ; \vec x)$ and $\exists u \prefix v . A(u , \vec u ; \vec x)$ are in $\bc(f_A)$.
82
\end{lemma}
83
\begin{proof}
84
	We give the $\forall$ case, the $\exists$ case being dual.
85
	The characteristic function $f(v , \vec u ; \vec x)$ is defined by predicative recursion on $v$ as:
86
	\[
87
	\begin{array}{rcl}
88
	f(0, \vec u ; \vec x) & \dfn & f_A (0 , \vec u ; \vec x) \\
89
	f(\succ i v , \vec u ; \vec x) & \dfn & \cond ( ; f_A (\succ i v, \vec u ; \vec x) , 0 , f(v , \vec u ; \vec x) )
90
	\end{array}
91
	\]
92
\end{proof}
93

    
94
Notice that $\prefix$ suffices to encode usual sharply bounded inequalities,
95
since $\forall u \leq |t| . A(u , \vec u ; \vec x) \ciff \forall u \prefix t . A(|u|, \vec u ; \vec x)$.
96

    
97

    
98
\subsection{Graphs of some basic functions}
99
Todo: $+1$,  
100

    
101
\subsection{Encoding sequences in the arithmetic}
102
\todo{}
103

    
104
\anupam{Assume we have a $\Sigma^\safe_1$ predicate $\beta(i,x,y)$, expressing that the $i$th element of the sequence $x$ is $y$, such that $\arith^1 \proves \forall i^\normal , x^\safe . \exists ! y^\safe . \beta (i,x,y)$.}
105

    
106

    
107
\subsection{A sequent calculus presentation}
108

    
109
\begin{figure}
110
\[
111
\small
112
\begin{array}{l}
113
\begin{array}{cccc}
114
%\vlinf{\lefrul{\bot}}{}{p, \lnot{p} \seqar }{}
115
%& \vlinf{\id}{}{p \seqar p}{}
116
%& \vlinf{\rigrul{\bot}}{}{\seqar p, \lnot{p}}{}
117
%& \vliinf{\cut}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta, A }{\Sigma, A \seqar \Pi}
118
 \vlinf{id}{}{\Gamma, p \seqar p, \Delta }{}
119
& \vliinf{cut}{}{\Gamma \seqar \Delta }{ \Gamma \seqar \Delta, A }{\Gamma, A \seqar \Delta}
120
&&
121
\\
122
\noalign{\bigskip}
123
%\noalign{\bigskip}
124
\vliinf{\lefrul{\cor}}{}{\Gamma, A \cor B \seqar \Delta}{\Gamma , A \seqar \Delta}{\Gamma, B \seqar \Delta}
125
&
126
\vlinf{\lefrul{\cand}}{}{\Gamma, A\cand B \seqar \Delta}{\Gamma, A , B \seqar \Delta}
127
&
128
%\vlinf{\lefrul{\laand}}{}{\Gamma, A\laand B \seqar \Delta}{\Gamma, B \seqar \Delta}
129
%\quad
130
\vlinf{\rigrul{\cor}}{}{\Gamma \seqar \Delta, A \cor B}{\Gamma \seqar \Delta, A, B}
131
&
132
%\vlinf{\rigrul{\laor}}{}{\Gamma \seqar \Delta, A\laor B}{\Gamma \seqar \Delta, B}
133
%\quad
134
\vliinf{\rigrul{\cand}}{}{\Gamma \seqar \Delta, A \cand B }{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, B}
135
\\
136
\noalign{\bigskip}
137

    
138
\vlinf{\lefrul{\neg}}{}{\Gamma, \neg A \seqar \Delta}{\Gamma \seqar A, \Delta}
139
&
140

    
141
\vlinf{\lefrul{\neg}}{}{\Gamma, \seqar \neg A, \Delta}{\Gamma, A \seqar  \Delta}
142
&
143
&
144
%\vliinf{\lefrul{\cimp}}{}{\Gamma, A \cimp B \seqar \Delta}{\Gamma \seqar A, \Delta}{\Gamma, B \seqar \Delta}
145
%&
146
%
147
%\vlinf{\rigrul{\cimp}}{}{\Gamma \seqar \Delta, A \cimp B}{\Gamma, A \seqar \Delta,  B}
148

    
149

    
150
\\
151

    
152
\noalign{\bigskip}
153
%\text{Structural:} & & & \\
154
%\noalign{\bigskip}
155

    
156
%\vlinf{\lefrul{\wk}}{}{\Gamma, A \seqar \Delta}{\Gamma \seqar \Delta}
157
%&
158
\vlinf{\lefrul{\cntr}}{}{\Gamma, A \seqar \Delta}{\Gamma, A, A \seqar \Delta}
159
%&
160
%\vlinf{\rigrul{\wk}}{}{\Gamma \seqar \Delta, A }{\Gamma \seqar \Delta}
161
&
162
\vlinf{\rigrul{\cntr}}{}{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, A, A}
163
&
164
&
165
\\
166
\noalign{\bigskip}
167
\vlinf{\lefrul{\exists}}{}{\Gamma, \exists x . A(x) \seqar \Delta}{\Gamma, A(a) \seqar \Delta}
168
&
169
\vlinf{\lefrul{\forall}}{}{\Gamma, \forall x. A(x) \seqar \Delta}{\Gamma, A(t) \seqar \Delta}
170
&
171
\vlinf{\rigrul{\exists}}{}{\Gamma \seqar \Delta, \exists x . A(x)}{ \Gamma \seqar \Delta, A(t)}
172
&
173
\vlinf{\rigrul{\forall}}{}{\Gamma \seqar \Delta, \forall x . A(x)}{ \Gamma \seqar \Delta, A(a) } \\
174
%\noalign{\bigskip}
175
% \vliinf{mix}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta}{\Sigma \seqar \Pi} &&&
176
\end{array}
177
\end{array}
178
\]
179
\caption{Sequent calculus rules}\label{fig:sequentcalculus}
180
\end{figure}
181
 We denote sequence as $\Gamma \seqar \Delta$ where $\Gamma$, $\Delta$ are multi sets of formulas. The sequent calculus rules are displayed on Fig. \ref{fig:sequentcalculus},  where $p$ is atomic, $i \in \{ 1,2 \}$, $t$ is a term and the eigenvariable $a$ does not occur free in $\Gamma$ or $\Delta$.
182

    
183
We consider \emph{systems} of `nonlogical' rules extending this sequent calculus, which we write as follows,
184
 \[
185
 \begin{array}{cc}
186
    \vlinf{(R)}{}{ \Gamma , \Sigma' \seqar \Delta' , \Pi  }{ \{\Gamma , \Sigma_i \seqar \Delta_i , \Pi \}_{i \in I} }
187
\end{array}
188
\]
189
 where, in each rule $(R)$, $I$ is a finite possibly empty set (indicating the number of premises) and we assume the following conditions and terminology:
190
 \begin{enumerate}
191
 \item In $(R)$ the formulas of $\Sigma', \Delta'$  are called \textit{principal}, those of $\Sigma_i, \Delta_i$ are called \textit{active}, and those of   
192
$ \Gamma,  \Pi$ are called \textit{context formulas}. 
193
\item Each rule $(R)$ comes with a list $a_1$, \dots, $a_k$ of eigenvariables such that each $a_j$ appears in exactly one $\Sigma_i, \Delta_i$ (so in some active formulas of exactly one premise)  and does not appear in  $\Sigma', \Delta'$ or $ \Gamma,  \Pi$.
194
    \item A system $\mathcal{S}$ of rules must be closed under substitutions of free variables by terms (where these substitutions do not contain the eigenvariables $a_j$ in their domain or codomain).  
195
   \end{enumerate}
196
 
197
%The distinction between modal and nonmodal formulae in $(R)$ induces condition 1
198
 Conditions 2 and 3 are standard requirements for nonlogical rules, independently of the logical setting, cf.\ \cite{Beckmann11}. Condition 2 reflects the intuitive idea that, in our nonlogical rules, we often need a notion of \textit{bound} variables in the active formulas (typically for induction rules), for which we rely on eigenvariables. Condition 3 is needed for our proof system to admit elimination of cuts on quantified formulas.
199

    
200
%\begin{definition}
201
%[Polynomial induction]
202
%The \emph{polynomial induction} axiom schema, $\pind$, consists of the following axioms,
203
%\[
204
%A(0) 
205
%\cimp (\forall x^{\normal} . ( A(x) \cimp A(\succ{0} x) ) )
206
%\cimp  (\forall x^{\normal} . ( A(x) \cimp A(\succ{1} x) ) ) 
207
%\cimp  \forall x^{\normal} . A(x)
208
%\]
209
%for each formula $A(x)$.
210
%
211
%For a class $\Xi$ of formulae, $\cax{\Xi}{\pind}$ denotes the set of induction axioms when $A(x) \in \Xi$. 
212
%
213
%We write $I\Xi$ to denote the theory consisting of $\basic$ and $\cax{\Xi}{\ind}$.
214
%\end{definition}
215

    
216
As an example any axiom can be represented by such a nonlogical rule $(R)$, with no premise ($I=\emptyset$), $\Delta'$ equal to the axiom and $\Gamma=\Sigma'=\Pi$. For instance the axiom $\pind$ of Def. \ref{def:polynomialinduction}.
217

    
218
Actually  $\pind$ is equivalent to the following rule:
219
\begin{equation}
220
\label{eqn:ind-rule}
221
\small
222
\vliinf{\pind}{}{ \normal(t) , \Gamma , A(0) \seqar A(t), \Delta }{ \normal(a) , \Gamma, A(a) \seqar A(\succ{0} a) , \Delta }{ \normal(a) , \Gamma, A(a) \seqar A(\succ{1} a) , \Delta  }
223
\end{equation}
224
where $I=2$ and  in all cases, $t$ varies over arbitrary terms and the eigenvariable $a$ does not occur in the lower sequent of the $\pind$ rule.
225

    
226
Similarly the $\rais$ inference rule of Def. \ref{def:ariththeory} is represented by the nonlogical rule:
227
 \[
228
 \begin{array}{cc}
229
    \vlinf{\rais}{}{  \normal(t_1), \dots, \normal(t_k) \seqar  \exists  y^\normal .  A }{  \normal(t_1), \dots, \normal(t_k) \seqar \exists  y^\safe .  A}
230
\end{array}
231
\]
232

    
233
%\patrick{In fact, I think we rather need the following nonlogical rule, which implies the previous one but is I guess more general:
234
%\[
235
% \begin{array}{cc}
236
%    \vlinf{\rais}{}{  \normal(t_1), \dots, \normal(t_k) \seqar  \normal(t) }{  \normal(t_1), \dots, \normal(t_k) \seqar \safe(t)}
237
%\end{array}
238
%\]
239
%}
240

    
241
The $\basic$ axioms are equivalent to the following nonlogical rules, that we will also designate by $\basic$:
242
\[
243
\small
244
\begin{array}{l}
245
\begin{array}{cccc}
246
\vlinf{}{}{\seqar \safe (0)}{}&
247
\vlinf{}{}{\safe(t) \seqar \safe(\succ{} t)}{}&
248
\vlinf{}{}{ \safe (t)   \seqar 0 \neq \succ{} t}{} &
249
\vlinf{}{}{\safe (s) , \safe (t)  , \succ{} s = \succ{} t\seqar s = t }{}\\
250
\end{array}
251
\\
252
\vlinf{}{}{\safe (t) \seqar t = 0 \cor \exists y^\safe . t = \succ{} y  }{}
253
\qquad
254
\vlinf{}{}{\safe(s), \safe(t) \seqar \safe(s+t) }{}\\
255
\vlinf{}{}{\normal (s), \safe(t) \seqar \safe(s \times t)  }{}
256
\qquad
257
\vlinf{}{}{\normal (s), \normal(t) \seqar \safe(s \smsh t)  }{}\\
258
\vlinf{}{}{\normal(t) \seqar \safe(t)  }{}
259
\end{array}
260
\]
261

    
262
 The sequent calculus for $\arith^i$ is that of Fig. \ref{fig:sequentcalculus} extended with the $\basic$,  $\cpind{\Sigma^\safe_i } $ and $\rais$ nonlogical rules.
263
 
264
 \begin{lemma}
265
 For any term $t$, its free variables can be split in two sets $\vec{x}$ and $\vec{y}$ such  that the sequent $\normal(\vec x), \safe(\vec y) \seqar \safe(t)$ is provable. 
266
 \end{lemma}
267
 
268
\subsection{Free-cut free normal form of proofs}
269
\todo{State theorem, with references (Takeuti, Cook-Nguyen) and present the important corollaries for this work.}
270

    
271
Since our nonlogical rules may have many principal formulae on which cuts may be anchored, we need a slightly more general notion of principality.
272
    \begin{definition}\label{def:anchoredcut}
273
  We define the notions of \textit{hereditarily principal formula} and \textit{anchored cut} in a $\system$-proof, for a system $\system$, by mutual induction as follows:
274
  \begin{itemize}
275
  \item A formula $A$ in a sequent $\Gamma \seqar \Delta$ is \textit{hereditarily principal} for a rule instance (S) if either (i) the sequent is in the conclusion of (S) and $A$ is principal in it, or 
276
(ii)  the sequent is in the conclusion of an anchored cut, the direct ancestor of $A$ in the corresponding premise is hereditarily principal for the rule instance (S), and the rule (S) is nonlogical.
277
  \item A cut-step is an \textit{anchored cut} if the two occurrences of its cut-formula $A$ in each premise are hereditarily principal for nonlogical steps, or one is hereditarily principal for a nonlogical step and the other one is principal for a logical step.
278
  \end{itemize}
279
     A cut which is not anchored will also be called a \textit{free-cut}.
280
  \end{definition}
281
  As a consequence of this definition, an anchored cut on a formula $A$ has the following properties:
282
  \begin{itemize}
283
  \item At least one of the two premises of the cut has above it a sub-branch of the proof which starts (top-down) with a nonlogical step (R) with $A$ as one of its principal formulas, and then a sequence of anchored cuts in which $A$ is part of the context.
284
  \item The other premise is either of the same form or is a logical step with principal formula $A$. 
285
  \end{itemize}
286
   
287
   Now we have (see \cite{Takeuti87}): 
288
   \begin{theorem}
289
   [Free-cut elimination]\label{thm:freecutelimination}
290
   \label{thm:free-cut-elim}
291
    Given a system  $\mathcal{S}$, any  $\mathcal{S}$-proof $\pi$ can be transformed into a $\system$-proof $\pi'$ with same end sequent and without any free-cut.
292
   \end{theorem}
293
   Now we want to deduce from that theorem a normal form property for proofs of certain formulas. But before that let us define some particular classes of sequents and proofs.
294
   
295
   Say that a sequent $\Gamma \seqar \Delta$ is \textit{well-typed} if for any free variable $x$ occurring in $\Gamma$ or $\Delta$, there exists a formula $\safe(x)$ or $\normal(x)$ in $\Gamma$. A proof is well-typed if its sequence are.
296
   
297
   \begin{lemma}\label{lem:welltyped}
298
   If a well-typed sequent $\Gamma \seqar \Delta$ is provable, then it admits a well-typed proof.
299
   \end{lemma}
300
   \begin{proof}
301
   First by Thm \ref{thm:freecutelimination} we know that $\Gamma \seqar \Delta$ admits a proof $\pi$ without any free-cut. Let us then prove that $\pi$ can be transformed in a proof $\pi'$ of same conclusion and such that, for any sequent, if it is well-typed then its premises are well-typed.
302
   
303
   \patrick{to be finished}
304
     \end{proof}
305
     
306
     \patrick{ TODO: define integer-positive sequents and proofs.}
307
     
308
 \begin{theorem}
309
   Assume the $\arith^i$ sequent calculus proves a closed formula $\forall \vec u^\normal . \forall \vec x^\safe . \exists y^\safe . A(\vec u ; \vec x , y)$. Then there exists a proof $\pi$ of the sequent 
310
   $\normal(\vec u), \safe(\vec x) \seqar \exists y^\safe . A(\vec u ; \vec x , y)$ satisfying:
311
   \begin{enumerate}
312
    \item $\pi$  only contains  $\Sigma^\safe_{i}$ formulas,
313
    \item $\pi$ is a well-typed and integer-positive proof. 
314
   \end{enumerate}
315
   \end{theorem}