root / CSL17 / arithmetic.tex @ 180
Historique | Voir | Annoter | Télécharger (15,18 ko)
1 |
\section{An arithmetic for the polynomial hierarchy} |
---|---|
2 |
Our base language is $\{ 0, \succ{} , + , \times, \smsh , |\cdot| , \leq \}$. We use classical logic connectives $\neg$, $\cand$, $\cor$, $\forall$, $\exists$. The formula $A \cimp B$ will be a notation for $\neg A \cor B$. |
3 |
|
4 |
The $\basic$ axioms are as follows: |
5 |
\[ |
6 |
\begin{array}{l} |
7 |
\safe (0) \\ |
8 |
\forall x^\safe . \safe (\succ{} x) \\ |
9 |
\forall x^\safe . 0 \neq \succ{} (x) \\ |
10 |
\forall x^\safe , y^\safe . (\succ{} x = \succ{} y \cimp x = y) \\ |
11 |
\forall x^\safe . (x = 0 \cor \exists y^\safe.\ x = \succ{} y )\\ |
12 |
\forall x^\safe, y^\safe . \safe(x+y)\\ |
13 |
\forall u^\normal, x^\safe . \safe(u\times x) \\ |
14 |
\forall u^\normal , v^\normal . \safe (u \smsh v)\\ |
15 |
\forall u^\normal \safe(u) |
16 |
\end{array} |
17 |
\] |
18 |
\anupam{in fact, we use essentially the same language, so just take Buss' Basic axioms after proper typing. Should also add the symbol $\hlf{\cdot}$ for binary predecessor then we have the full language of bounded arithmetic.} |
19 |
|
20 |
|
21 |
Notation: if $\vec t=t_0,\dots, t_k$, we will denote as $\safe(\vec t)$ the sequence of formulas $\safe(t_0),\dots, \safe(t_k)$. Similarly for $\normal(\vec t)$. |
22 |
|
23 |
\begin{definition} |
24 |
[Derived functions and notations] |
25 |
We write $1,2,3,\dots$ for the terms $\succ{} 0, \succ{} \succ{} 0, \succ{} \succ{} \succ{} 0 \dots$, and frequently omit the $\times$ symbol. |
26 |
We define the functions $\succ 0 x , \succ 1 x$ as $2 x$ and $2x +1$ respectively. |
27 |
|
28 |
Need $bit$, $\beta$ , $\pair{}{}{}$. |
29 |
\end{definition} |
30 |
|
31 |
(Here use a variation of S12 with sharply bounded quantifiers and safe quantifiers) |
32 |
|
33 |
Use base theory + sharply bounded quantifiers. |
34 |
|
35 |
|
36 |
|
37 |
|
38 |
\begin{definition} |
39 |
[Quantifier hierarchy] |
40 |
$\Sigma^\safe_0 = \Pi^\safe_0 $ is the set of formulae whose only quantifiers are sharply bounded. |
41 |
We define $\Sigma^\safe_{i+1}$ as the closure of $\Pi^\safe_i $ under $\cor, \cand $, safe existentials and sharply bounded quantifiers. |
42 |
We define $\Pi^\safe_{i+1}$ as the closure of $\Sigma^\safe_i $ under $\cor, \cand $, safe universals and sharply bounded quantifiers. |
43 |
\end{definition} |
44 |
|
45 |
|
46 |
\anupam{Collection principles for prenexing? Otherwise need to add closure under sharply bounded quantifiers.} |
47 |
\begin{definition}\label{def:polynomialinduction} |
48 |
[Polynomial induction] |
49 |
The \emph{polynomial induction} axiom schema, $\pind$, consists of the following axioms, |
50 |
\[ |
51 |
A(0) |
52 |
\cimp (\forall x^{\normal} . ( A(x) \cimp A(\succ{0} x) ) ) |
53 |
\cimp (\forall x^{\normal} . ( A(x) \cimp A(\succ{1} x) ) ) |
54 |
\cimp \forall x^{\normal} . A(x) |
55 |
\] |
56 |
for each formula $A(x)$. |
57 |
|
58 |
For a class $\Xi$ of formulae, $\cax{\Xi}{\pind}$ denotes the set of induction axioms when $A(x) \in \Xi$. |
59 |
|
60 |
%We write $I\Xi$ to denote the theory consisting of $\basic$ and $\cax{\Xi}{\ind}$. |
61 |
\end{definition} |
62 |
|
63 |
|
64 |
\begin{definition}\label{def:ariththeory} |
65 |
Define the theory $\arith^i$ consisting of the following axioms: |
66 |
\begin{itemize} |
67 |
\item $\basic$; |
68 |
\item $\cpind{\Sigma^\safe_i } $: |
69 |
\end{itemize} |
70 |
and an inference rule, called $\rais$, for closed formulas $\exists y^\normal . A$: |
71 |
\[ |
72 |
\dfrac{\forall \vec x^\normal . \exists y^\safe . A }{ \forall \vec x^\normal .\exists y^\normal . A} |
73 |
\] |
74 |
%\patrick{For $\forall \vec x^\normal . \exists y^\safe . A$ closed ?} |
75 |
\end{definition} |
76 |
\anupam{In induction,for inductive cases, need $u\neq 0$ for $\succ 0$ case.} |
77 |
|
78 |
\begin{lemma} |
79 |
[Sharply bounded lemma] |
80 |
Let $f_A$ be the characteristic function of a predicate $A(u , \vec u ; \vec x)$. |
81 |
Then the characteristic functions of $\forall u \prefix v . A(u,\vec u ; \vec x)$ and $\exists u \prefix v . A(u , \vec u ; \vec x)$ are in $\bc(f_A)$. |
82 |
\end{lemma} |
83 |
\begin{proof} |
84 |
We give the $\forall$ case, the $\exists$ case being dual. |
85 |
The characteristic function $f(v , \vec u ; \vec x)$ is defined by predicative recursion on $v$ as: |
86 |
\[ |
87 |
\begin{array}{rcl} |
88 |
f(0, \vec u ; \vec x) & \dfn & f_A (0 , \vec u ; \vec x) \\ |
89 |
f(\succ i v , \vec u ; \vec x) & \dfn & \cond ( ; f_A (\succ i v, \vec u ; \vec x) , 0 , f(v , \vec u ; \vec x) ) |
90 |
\end{array} |
91 |
\] |
92 |
\end{proof} |
93 |
|
94 |
Notice that $\prefix$ suffices to encode usual sharply bounded inequalities, |
95 |
since $\forall u \leq |t| . A(u , \vec u ; \vec x) \ciff \forall u \prefix t . A(|u|, \vec u ; \vec x)$. |
96 |
|
97 |
|
98 |
\subsection{Graphs of some basic functions} |
99 |
Todo: $+1$, |
100 |
|
101 |
\subsection{Encoding sequences in the arithmetic} |
102 |
\todo{} |
103 |
|
104 |
\anupam{Assume we have a $\Sigma^\safe_1$ predicate $\beta(i,x,y)$, expressing that the $i$th element of the sequence $x$ is $y$, such that $\arith^1 \proves \forall i^\normal , x^\safe . \exists ! y^\safe . \beta (i,x,y)$.} |
105 |
|
106 |
|
107 |
\subsection{A sequent calculus presentation} |
108 |
|
109 |
\begin{figure} |
110 |
\[ |
111 |
\small |
112 |
\begin{array}{l} |
113 |
\begin{array}{cccc} |
114 |
%\vlinf{\lefrul{\bot}}{}{p, \lnot{p} \seqar }{} |
115 |
%& \vlinf{\id}{}{p \seqar p}{} |
116 |
%& \vlinf{\rigrul{\bot}}{}{\seqar p, \lnot{p}}{} |
117 |
%& \vliinf{\cut}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta, A }{\Sigma, A \seqar \Pi} |
118 |
\vlinf{id}{}{\Gamma, p \seqar p, \Delta }{} |
119 |
& \vliinf{cut}{}{\Gamma \seqar \Delta }{ \Gamma \seqar \Delta, A }{\Gamma, A \seqar \Delta} |
120 |
&& |
121 |
\\ |
122 |
\noalign{\bigskip} |
123 |
%\noalign{\bigskip} |
124 |
\vliinf{\lefrul{\cor}}{}{\Gamma, A \cor B \seqar \Delta}{\Gamma , A \seqar \Delta}{\Gamma, B \seqar \Delta} |
125 |
& |
126 |
\vlinf{\lefrul{\cand}}{}{\Gamma, A\cand B \seqar \Delta}{\Gamma, A , B \seqar \Delta} |
127 |
& |
128 |
%\vlinf{\lefrul{\laand}}{}{\Gamma, A\laand B \seqar \Delta}{\Gamma, B \seqar \Delta} |
129 |
%\quad |
130 |
\vlinf{\rigrul{\cor}}{}{\Gamma \seqar \Delta, A \cor B}{\Gamma \seqar \Delta, A, B} |
131 |
& |
132 |
%\vlinf{\rigrul{\laor}}{}{\Gamma \seqar \Delta, A\laor B}{\Gamma \seqar \Delta, B} |
133 |
%\quad |
134 |
\vliinf{\rigrul{\cand}}{}{\Gamma \seqar \Delta, A \cand B }{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, B} |
135 |
\\ |
136 |
\noalign{\bigskip} |
137 |
|
138 |
\vlinf{\lefrul{\neg}}{}{\Gamma, \neg A \seqar \Delta}{\Gamma \seqar A, \Delta} |
139 |
& |
140 |
|
141 |
\vlinf{\lefrul{\neg}}{}{\Gamma, \seqar \neg A, \Delta}{\Gamma, A \seqar \Delta} |
142 |
& |
143 |
& |
144 |
%\vliinf{\lefrul{\cimp}}{}{\Gamma, A \cimp B \seqar \Delta}{\Gamma \seqar A, \Delta}{\Gamma, B \seqar \Delta} |
145 |
%& |
146 |
% |
147 |
%\vlinf{\rigrul{\cimp}}{}{\Gamma \seqar \Delta, A \cimp B}{\Gamma, A \seqar \Delta, B} |
148 |
|
149 |
|
150 |
\\ |
151 |
|
152 |
\noalign{\bigskip} |
153 |
%\text{Structural:} & & & \\ |
154 |
%\noalign{\bigskip} |
155 |
|
156 |
%\vlinf{\lefrul{\wk}}{}{\Gamma, A \seqar \Delta}{\Gamma \seqar \Delta} |
157 |
%& |
158 |
\vlinf{\lefrul{\cntr}}{}{\Gamma, A \seqar \Delta}{\Gamma, A, A \seqar \Delta} |
159 |
%& |
160 |
%\vlinf{\rigrul{\wk}}{}{\Gamma \seqar \Delta, A }{\Gamma \seqar \Delta} |
161 |
& |
162 |
\vlinf{\rigrul{\cntr}}{}{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, A, A} |
163 |
& |
164 |
& |
165 |
\\ |
166 |
\noalign{\bigskip} |
167 |
\vlinf{\lefrul{\exists}}{}{\Gamma, \exists x . A(x) \seqar \Delta}{\Gamma, A(a) \seqar \Delta} |
168 |
& |
169 |
\vlinf{\lefrul{\forall}}{}{\Gamma, \forall x. A(x) \seqar \Delta}{\Gamma, A(t) \seqar \Delta} |
170 |
& |
171 |
\vlinf{\rigrul{\exists}}{}{\Gamma \seqar \Delta, \exists x . A(x)}{ \Gamma \seqar \Delta, A(t)} |
172 |
& |
173 |
\vlinf{\rigrul{\forall}}{}{\Gamma \seqar \Delta, \forall x . A(x)}{ \Gamma \seqar \Delta, A(a) } \\ |
174 |
%\noalign{\bigskip} |
175 |
% \vliinf{mix}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta}{\Sigma \seqar \Pi} &&& |
176 |
\end{array} |
177 |
\end{array} |
178 |
\] |
179 |
\caption{Sequent calculus rules}\label{fig:sequentcalculus} |
180 |
\end{figure} |
181 |
We denote sequence as $\Gamma \seqar \Delta$ where $\Gamma$, $\Delta$ are multi sets of formulas. The sequent calculus rules are displayed on Fig. \ref{fig:sequentcalculus}, where $p$ is atomic, $i \in \{ 1,2 \}$, $t$ is a term and the eigenvariable $a$ does not occur free in $\Gamma$ or $\Delta$. |
182 |
|
183 |
We consider \emph{systems} of `nonlogical' rules extending this sequent calculus, which we write as follows, |
184 |
\[ |
185 |
\begin{array}{cc} |
186 |
\vlinf{(R)}{}{ \Gamma , \Sigma' \seqar \Delta' , \Pi }{ \{\Gamma , \Sigma_i \seqar \Delta_i , \Pi \}_{i \in I} } |
187 |
\end{array} |
188 |
\] |
189 |
where, in each rule $(R)$, $I$ is a finite possibly empty set (indicating the number of premises) and we assume the following conditions and terminology: |
190 |
\begin{enumerate} |
191 |
\item In $(R)$ the formulas of $\Sigma', \Delta'$ are called \textit{principal}, those of $\Sigma_i, \Delta_i$ are called \textit{active}, and those of |
192 |
$ \Gamma, \Pi$ are called \textit{context formulas}. |
193 |
\item Each rule $(R)$ comes with a list $a_1$, \dots, $a_k$ of eigenvariables such that each $a_j$ appears in exactly one $\Sigma_i, \Delta_i$ (so in some active formulas of exactly one premise) and does not appear in $\Sigma', \Delta'$ or $ \Gamma, \Pi$. |
194 |
\item A system $\mathcal{S}$ of rules must be closed under substitutions of free variables by terms (where these substitutions do not contain the eigenvariables $a_j$ in their domain or codomain). |
195 |
\end{enumerate} |
196 |
|
197 |
%The distinction between modal and nonmodal formulae in $(R)$ induces condition 1 |
198 |
Conditions 2 and 3 are standard requirements for nonlogical rules, independently of the logical setting, cf.\ \cite{Beckmann11}. Condition 2 reflects the intuitive idea that, in our nonlogical rules, we often need a notion of \textit{bound} variables in the active formulas (typically for induction rules), for which we rely on eigenvariables. Condition 3 is needed for our proof system to admit elimination of cuts on quantified formulas. |
199 |
|
200 |
%\begin{definition} |
201 |
%[Polynomial induction] |
202 |
%The \emph{polynomial induction} axiom schema, $\pind$, consists of the following axioms, |
203 |
%\[ |
204 |
%A(0) |
205 |
%\cimp (\forall x^{\normal} . ( A(x) \cimp A(\succ{0} x) ) ) |
206 |
%\cimp (\forall x^{\normal} . ( A(x) \cimp A(\succ{1} x) ) ) |
207 |
%\cimp \forall x^{\normal} . A(x) |
208 |
%\] |
209 |
%for each formula $A(x)$. |
210 |
% |
211 |
%For a class $\Xi$ of formulae, $\cax{\Xi}{\pind}$ denotes the set of induction axioms when $A(x) \in \Xi$. |
212 |
% |
213 |
%We write $I\Xi$ to denote the theory consisting of $\basic$ and $\cax{\Xi}{\ind}$. |
214 |
%\end{definition} |
215 |
|
216 |
As an example any axiom can be represented by such a nonlogical rule $(R)$, with no premise ($I=\emptyset$), $\Delta'$ equal to the axiom and $\Gamma=\Sigma'=\Pi$. For instance the axiom $\pind$ of Def. \ref{def:polynomialinduction}. |
217 |
|
218 |
Actually $\pind$ is equivalent to the following rule: |
219 |
\begin{equation} |
220 |
\label{eqn:ind-rule} |
221 |
\small |
222 |
\vliinf{\pind}{}{ \normal(t) , \Gamma , A(0) \seqar A(t), \Delta }{ \normal(a) , \Gamma, A(a) \seqar A(\succ{0} a) , \Delta }{ \normal(a) , \Gamma, A(a) \seqar A(\succ{1} a) , \Delta } |
223 |
\end{equation} |
224 |
where $I=2$ and in all cases, $t$ varies over arbitrary terms and the eigenvariable $a$ does not occur in the lower sequent of the $\pind$ rule. |
225 |
|
226 |
Similarly the $\rais$ inference rule of Def. \ref{def:ariththeory} is represented by the nonlogical rule: |
227 |
\[ |
228 |
\begin{array}{cc} |
229 |
\vlinf{\rais}{}{ \normal(t_1), \dots, \normal(t_k) \seqar \exists y^\normal . A }{ \normal(t_1), \dots, \normal(t_k) \seqar \exists y^\safe . A} |
230 |
\end{array} |
231 |
\] |
232 |
|
233 |
%\patrick{In fact, I think we rather need the following nonlogical rule, which implies the previous one but is I guess more general: |
234 |
%\[ |
235 |
% \begin{array}{cc} |
236 |
% \vlinf{\rais}{}{ \normal(t_1), \dots, \normal(t_k) \seqar \normal(t) }{ \normal(t_1), \dots, \normal(t_k) \seqar \safe(t)} |
237 |
%\end{array} |
238 |
%\] |
239 |
%} |
240 |
|
241 |
The $\basic$ axioms are equivalent to the following nonlogical rules, that we will also designate by $\basic$: |
242 |
\[ |
243 |
\small |
244 |
\begin{array}{l} |
245 |
\begin{array}{cccc} |
246 |
\vlinf{}{}{\seqar \safe (0)}{}& |
247 |
\vlinf{}{}{\safe(t) \seqar \safe(\succ{} t)}{}& |
248 |
\vlinf{}{}{ \safe (t) \seqar 0 \neq \succ{} t}{} & |
249 |
\vlinf{}{}{\safe (s) , \safe (t) , \succ{} s = \succ{} t\seqar s = t }{}\\ |
250 |
\end{array} |
251 |
\\ |
252 |
\vlinf{}{}{\safe (t) \seqar t = 0 \cor \exists y^\safe . t = \succ{} y }{} |
253 |
\qquad |
254 |
\vlinf{}{}{\safe(s), \safe(t) \seqar \safe(s+t) }{}\\ |
255 |
\vlinf{}{}{\normal (s), \safe(t) \seqar \safe(s \times t) }{} |
256 |
\qquad |
257 |
\vlinf{}{}{\normal (s), \normal(t) \seqar \safe(s \smsh t) }{}\\ |
258 |
\vlinf{}{}{\normal(t) \seqar \safe(t) }{} |
259 |
\end{array} |
260 |
\] |
261 |
|
262 |
The sequent calculus for $\arith^i$ is that of Fig. \ref{fig:sequentcalculus} extended with the $\basic$, $\cpind{\Sigma^\safe_i } $ and $\rais$ nonlogical rules. |
263 |
|
264 |
\begin{lemma} |
265 |
For any term $t$, its free variables can be split in two sets $\vec{x}$ and $\vec{y}$ such that the sequent $\normal(\vec x), \safe(\vec y) \seqar \safe(t)$ is provable. |
266 |
\end{lemma} |
267 |
|
268 |
\subsection{Free-cut free normal form of proofs} |
269 |
\todo{State theorem, with references (Takeuti, Cook-Nguyen) and present the important corollaries for this work.} |
270 |
|
271 |
Since our nonlogical rules may have many principal formulae on which cuts may be anchored, we need a slightly more general notion of principality. |
272 |
\begin{definition}\label{def:anchoredcut} |
273 |
We define the notions of \textit{hereditarily principal formula} and \textit{anchored cut} in a $\system$-proof, for a system $\system$, by mutual induction as follows: |
274 |
\begin{itemize} |
275 |
\item A formula $A$ in a sequent $\Gamma \seqar \Delta$ is \textit{hereditarily principal} for a rule instance (S) if either (i) the sequent is in the conclusion of (S) and $A$ is principal in it, or |
276 |
(ii) the sequent is in the conclusion of an anchored cut, the direct ancestor of $A$ in the corresponding premise is hereditarily principal for the rule instance (S), and the rule (S) is nonlogical. |
277 |
\item A cut-step is an \textit{anchored cut} if the two occurrences of its cut-formula $A$ in each premise are hereditarily principal for nonlogical steps, or one is hereditarily principal for a nonlogical step and the other one is principal for a logical step. |
278 |
\end{itemize} |
279 |
A cut which is not anchored will also be called a \textit{free-cut}. |
280 |
\end{definition} |
281 |
As a consequence of this definition, an anchored cut on a formula $A$ has the following properties: |
282 |
\begin{itemize} |
283 |
\item At least one of the two premises of the cut has above it a sub-branch of the proof which starts (top-down) with a nonlogical step (R) with $A$ as one of its principal formulas, and then a sequence of anchored cuts in which $A$ is part of the context. |
284 |
\item The other premise is either of the same form or is a logical step with principal formula $A$. |
285 |
\end{itemize} |
286 |
|
287 |
Now we have (see \cite{Takeuti87}): |
288 |
\begin{theorem} |
289 |
[Free-cut elimination]\label{thm:freecutelimination} |
290 |
\label{thm:free-cut-elim} |
291 |
Given a system $\mathcal{S}$, any $\mathcal{S}$-proof $\pi$ can be transformed into a $\system$-proof $\pi'$ with same end sequent and without any free-cut. |
292 |
\end{theorem} |
293 |
Now we want to deduce from that theorem a normal form property for proofs of certain formulas. But before that let us define some particular classes of sequents and proofs. |
294 |
|
295 |
Say that a sequent $\Gamma \seqar \Delta$ is \textit{well-typed} if for any free variable $x$ occurring in $\Gamma$ or $\Delta$, there exists a formula $\safe(x)$ or $\normal(x)$ in $\Gamma$. A proof is well-typed if its sequence are. |
296 |
|
297 |
\begin{lemma}\label{lem:welltyped} |
298 |
If a well-typed sequent $\Gamma \seqar \Delta$ is provable, then it admits a well-typed proof. |
299 |
\end{lemma} |
300 |
\begin{proof} |
301 |
First by Thm \ref{thm:freecutelimination} we know that $\Gamma \seqar \Delta$ admits a proof $\pi$ without any free-cut. Let us then prove that $\pi$ can be transformed in a proof $\pi'$ of same conclusion and such that, for any sequent, if it is well-typed then its premises are well-typed. |
302 |
|
303 |
\patrick{to be finished} |
304 |
\end{proof} |
305 |
|
306 |
\patrick{ TODO: define integer-positive sequents and proofs.} |
307 |
|
308 |
\begin{theorem} |
309 |
Assume the $\arith^i$ sequent calculus proves a closed formula $\forall \vec u^\normal . \forall \vec x^\safe . \exists y^\safe . A(\vec u ; \vec x , y)$. Then there exists a proof $\pi$ of the sequent |
310 |
$\normal(\vec u), \safe(\vec x) \seqar \exists y^\safe . A(\vec u ; \vec x , y)$ satisfying: |
311 |
\begin{enumerate} |
312 |
\item $\pi$ only contains $\Sigma^\safe_{i}$ formulas, |
313 |
\item $\pi$ is a well-typed and integer-positive proof. |
314 |
\end{enumerate} |
315 |
\end{theorem} |