Révision 180 CSL17/arithmetic.tex

arithmetic.tex (revision 180)
12 12
\forall x^\safe, y^\safe . \safe(x+y)\\
13 13
\forall u^\normal, x^\safe . \safe(u\times x) \\
14 14
\forall u^\normal , v^\normal . \safe (u \smsh v)\\
15
\patrick{\forall u^\normal \safe(u) \; ?}
15
\forall u^\normal \safe(u) 
16 16
\end{array}
17 17
\]
18 18
\anupam{in fact, we use essentially the same language, so just take Buss' Basic axioms after proper typing. Should also add the symbol $\hlf{\cdot}$ for binary predecessor then we have the full language of bounded arithmetic.}
......
67 67
	\item $\basic$;
68 68
	\item $\cpind{\Sigma^\safe_i } $:
69 69
\end{itemize}
70
and an inference rule, called $\rais$:
70
and an inference rule, called $\rais$, for closed formulas $\exists y^\normal . A$:
71 71
\[
72 72
 \dfrac{\forall \vec x^\normal . \exists  y^\safe .  A }{ \forall \vec x^\normal .\exists y^\normal . A}
73 73
\]
74
\patrick{For $\forall \vec x^\normal . \exists  y^\safe .  A$ closed ?} 
74
%\patrick{For $\forall \vec x^\normal . \exists  y^\safe .  A$ closed ?} 
75 75
\end{definition}
76 76
\anupam{In induction,for inductive cases, need $u\neq 0$ for $\succ 0$ case.}
77 77

  
......
115 115
%& \vlinf{\id}{}{p \seqar p}{}
116 116
%& \vlinf{\rigrul{\bot}}{}{\seqar p, \lnot{p}}{}
117 117
%& \vliinf{\cut}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta, A }{\Sigma, A \seqar \Pi}
118
 \vlinf{id}{}{p \seqar p}{}
118
 \vlinf{id}{}{\Gamma, p \seqar p, \Delta }{}
119 119
& \vliinf{cut}{}{\Gamma \seqar \Delta }{ \Gamma \seqar \Delta, A }{\Gamma, A \seqar \Delta}
120 120
&&
121 121
\\
......
153 153
%\text{Structural:} & & & \\
154 154
%\noalign{\bigskip}
155 155

  
156
\vlinf{\lefrul{\wk}}{}{\Gamma, A \seqar \Delta}{\Gamma \seqar \Delta}
157
&
156
%\vlinf{\lefrul{\wk}}{}{\Gamma, A \seqar \Delta}{\Gamma \seqar \Delta}
157
%&
158 158
\vlinf{\lefrul{\cntr}}{}{\Gamma, A \seqar \Delta}{\Gamma, A, A \seqar \Delta}
159
%&
160
%\vlinf{\rigrul{\wk}}{}{\Gamma \seqar \Delta, A }{\Gamma \seqar \Delta}
159 161
&
160
\vlinf{\rigrul{\wk}}{}{\Gamma \seqar \Delta, A }{\Gamma \seqar \Delta}
162
\vlinf{\rigrul{\cntr}}{}{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, A, A}
161 163
&
162
\vlinf{\rigrul{\cntr}}{}{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, A, A}
164
&
163 165
\\
164 166
\noalign{\bigskip}
165 167
\vlinf{\lefrul{\exists}}{}{\Gamma, \exists x . A(x) \seqar \Delta}{\Gamma, A(a) \seqar \Delta}
......
253 255
\vlinf{}{}{\normal (s), \safe(t) \seqar \safe(s \times t)  }{}
254 256
\qquad
255 257
\vlinf{}{}{\normal (s), \normal(t) \seqar \safe(s \smsh t)  }{}\\
256
\patrick{\vlinf{}{}{\normal(t) \seqar \safe(t)  }{}}
258
\vlinf{}{}{\normal(t) \seqar \safe(t)  }{}
257 259
\end{array}
258 260
\]
259 261

  

Formats disponibles : Unified diff