Révision 179 CSL17/arithmetic.tex
arithmetic.tex (revision 179) | ||
---|---|---|
1 | 1 |
\section{An arithmetic for the polynomial hierarchy} |
2 |
Our base language is $\{ 0, \succ{} , + , \times, \smsh , |\cdot| , \leq \}$. |
|
2 |
Our base language is $\{ 0, \succ{} , + , \times, \smsh , |\cdot| , \leq \}$. We use classical logic connectives $\neg$, $\cand$, $\cor$, $\forall$, $\exists$. The formula $A \cimp B$ will be a notation for $\neg A \cor B$.
|
|
3 | 3 |
|
4 | 4 |
The $\basic$ axioms are as follows: |
5 | 5 |
\[ |
... | ... | |
11 | 11 |
\forall x^\safe . (x = 0 \cor \exists y^\safe.\ x = \succ{} y )\\ |
12 | 12 |
\forall x^\safe, y^\safe . \safe(x+y)\\ |
13 | 13 |
\forall u^\normal, x^\safe . \safe(u\times x) \\ |
14 |
\forall u^\normal , v^\normal . \safe (u \smsh v) |
|
14 |
\forall u^\normal , v^\normal . \safe (u \smsh v)\\ |
|
15 |
\patrick{\forall u^\normal \safe(u) \; ?} |
|
15 | 16 |
\end{array} |
16 | 17 |
\] |
17 | 18 |
\anupam{in fact, we use essentially the same language, so just take Buss' Basic axioms after proper typing. Should also add the symbol $\hlf{\cdot}$ for binary predecessor then we have the full language of bounded arithmetic.} |
18 | 19 |
|
19 | 20 |
|
20 |
|
|
21 |
Notation: if $\vec t=t_0,\dots, t_k$, we will denote as $\safe(\vec t)$ the sequence of formulas $\safe(t_0),\dots, \safe(t_k)$. Similarly for $\normal(\vec t)$. |
|
22 |
|
|
21 | 23 |
\begin{definition} |
22 | 24 |
[Derived functions and notations] |
23 | 25 |
We write $1,2,3,\dots$ for the terms $\succ{} 0, \succ{} \succ{} 0, \succ{} \succ{} \succ{} 0 \dots$, and frequently omit the $\times$ symbol. |
... | ... | |
69 | 71 |
\[ |
70 | 72 |
\dfrac{\forall \vec x^\normal . \exists y^\safe . A }{ \forall \vec x^\normal .\exists y^\normal . A} |
71 | 73 |
\] |
74 |
\patrick{For $\forall \vec x^\normal . \exists y^\safe . A$ closed ?} |
|
72 | 75 |
\end{definition} |
73 | 76 |
\anupam{In induction,for inductive cases, need $u\neq 0$ for $\succ 0$ case.} |
74 | 77 |
|
... | ... | |
102 | 105 |
|
103 | 106 |
|
104 | 107 |
\subsection{A sequent calculus presentation} |
105 |
\todo{Write out usual first-order sequent calculus} |
|
106 | 108 |
|
107 | 109 |
\begin{figure} |
108 | 110 |
\[ |
... | ... | |
132 | 134 |
\vliinf{\rigrul{\cand}}{}{\Gamma \seqar \Delta, A \cand B }{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, B} |
133 | 135 |
\\ |
134 | 136 |
\noalign{\bigskip} |
135 |
\vliinf{\lefrul{\cimp}}{}{\Gamma, A \cimp B \seqar \Delta}{\Gamma \seqar A, \Delta}{\Gamma, B \seqar \Delta} |
|
136 |
& |
|
137 |
|
|
137 | 138 |
\vlinf{\lefrul{\neg}}{}{\Gamma, \neg A \seqar \Delta}{\Gamma \seqar A, \Delta} |
138 | 139 |
& |
139 | 140 |
|
140 |
\vlinf{\rigrul{\cimp}}{}{\Gamma \seqar \Delta, A \cimp B}{\Gamma, A \seqar \Delta, B}
|
|
141 |
\vlinf{\lefrul{\neg}}{}{\Gamma, \seqar \neg A, \Delta}{\Gamma, A \seqar \Delta}
|
|
141 | 142 |
& |
143 |
& |
|
144 |
%\vliinf{\lefrul{\cimp}}{}{\Gamma, A \cimp B \seqar \Delta}{\Gamma \seqar A, \Delta}{\Gamma, B \seqar \Delta} |
|
145 |
%& |
|
146 |
% |
|
147 |
%\vlinf{\rigrul{\cimp}}{}{\Gamma \seqar \Delta, A \cimp B}{\Gamma, A \seqar \Delta, B} |
|
142 | 148 |
|
143 |
\vlinf{\lefrul{\neg}}{}{\Gamma, \seqar \neg A, \Delta}{\Gamma, A \seqar \Delta} |
|
149 |
|
|
144 | 150 |
\\ |
145 | 151 |
|
146 | 152 |
\noalign{\bigskip} |
... | ... | |
218 | 224 |
Similarly the $\rais$ inference rule of Def. \ref{def:ariththeory} is represented by the nonlogical rule: |
219 | 225 |
\[ |
220 | 226 |
\begin{array}{cc} |
221 |
\vlinf{\rais}{}{ \Gamma \seqar \forall \vec x^\normal . \exists y^\normal . A , \Pi }{ \Gamma \seqar \forall \vec x^\normal . \exists y^\safe . A, \Pi }
|
|
227 |
\vlinf{\rais}{}{ \normal(t_1), \dots, \normal(t_k) \seqar \exists y^\normal . A }{ \normal(t_1), \dots, \normal(t_k) \seqar \exists y^\safe . A}
|
|
222 | 228 |
\end{array} |
223 | 229 |
\] |
224 |
The sequent calculus for $\arith^i$ is that of Fig. \ref{fig:sequentcalculus} extended with nonlogical rules for the axioms of $\basic$, $\cpind{\Sigma^\safe_i } $ and $\rais$. |
|
230 |
|
|
231 |
%\patrick{In fact, I think we rather need the following nonlogical rule, which implies the previous one but is I guess more general: |
|
232 |
%\[ |
|
233 |
% \begin{array}{cc} |
|
234 |
% \vlinf{\rais}{}{ \normal(t_1), \dots, \normal(t_k) \seqar \normal(t) }{ \normal(t_1), \dots, \normal(t_k) \seqar \safe(t)} |
|
235 |
%\end{array} |
|
236 |
%\] |
|
237 |
%} |
|
238 |
|
|
239 |
The $\basic$ axioms are equivalent to the following nonlogical rules, that we will also designate by $\basic$: |
|
240 |
\[ |
|
241 |
\small |
|
242 |
\begin{array}{l} |
|
243 |
\begin{array}{cccc} |
|
244 |
\vlinf{}{}{\seqar \safe (0)}{}& |
|
245 |
\vlinf{}{}{\safe(t) \seqar \safe(\succ{} t)}{}& |
|
246 |
\vlinf{}{}{ \safe (t) \seqar 0 \neq \succ{} t}{} & |
|
247 |
\vlinf{}{}{\safe (s) , \safe (t) , \succ{} s = \succ{} t\seqar s = t }{}\\ |
|
248 |
\end{array} |
|
249 |
\\ |
|
250 |
\vlinf{}{}{\safe (t) \seqar t = 0 \cor \exists y^\safe . t = \succ{} y }{} |
|
251 |
\qquad |
|
252 |
\vlinf{}{}{\safe(s), \safe(t) \seqar \safe(s+t) }{}\\ |
|
253 |
\vlinf{}{}{\normal (s), \safe(t) \seqar \safe(s \times t) }{} |
|
254 |
\qquad |
|
255 |
\vlinf{}{}{\normal (s), \normal(t) \seqar \safe(s \smsh t) }{}\\ |
|
256 |
\patrick{\vlinf{}{}{\normal(t) \seqar \safe(t) }{}} |
|
257 |
\end{array} |
|
258 |
\] |
|
259 |
|
|
260 |
The sequent calculus for $\arith^i$ is that of Fig. \ref{fig:sequentcalculus} extended with the $\basic$, $\cpind{\Sigma^\safe_i } $ and $\rais$ nonlogical rules. |
|
261 |
|
|
262 |
\begin{lemma} |
|
263 |
For any term $t$, its free variables can be split in two sets $\vec{x}$ and $\vec{y}$ such that the sequent $\normal(\vec x), \safe(\vec y) \seqar \safe(t)$ is provable. |
|
264 |
\end{lemma} |
|
265 |
|
|
225 | 266 |
\subsection{Free-cut free normal form of proofs} |
226 | 267 |
\todo{State theorem, with references (Takeuti, Cook-Nguyen) and present the important corollaries for this work.} |
227 | 268 |
|
... | ... | |
243 | 284 |
|
244 | 285 |
Now we have (see \cite{Takeuti87}): |
245 | 286 |
\begin{theorem} |
246 |
[Free-cut elimination] |
|
287 |
[Free-cut elimination]\label{thm:freecutelimination}
|
|
247 | 288 |
\label{thm:free-cut-elim} |
248 | 289 |
Given a system $\mathcal{S}$, any $\mathcal{S}$-proof $\pi$ can be transformed into a $\system$-proof $\pi'$ with same end sequent and without any free-cut. |
249 | 290 |
\end{theorem} |
250 |
% \begin{proposition} |
|
251 |
% |
|
252 |
% \end{proposition} |
|
291 |
Now we want to deduce from that theorem a normal form property for proofs of certain formulas. But before that let us define some particular classes of sequents and proofs. |
|
292 |
|
|
293 |
Say that a sequent $\Gamma \seqar \Delta$ is \textit{well-typed} if for any free variable $x$ occurring in $\Gamma$ or $\Delta$, there exists a formula $\safe(x)$ or $\normal(x)$ in $\Gamma$. A proof is well-typed if its sequence are. |
|
294 |
|
|
295 |
\begin{lemma}\label{lem:welltyped} |
|
296 |
If a well-typed sequent $\Gamma \seqar \Delta$ is provable, then it admits a well-typed proof. |
|
297 |
\end{lemma} |
|
298 |
\begin{proof} |
|
299 |
First by Thm \ref{thm:freecutelimination} we know that $\Gamma \seqar \Delta$ admits a proof $\pi$ without any free-cut. Let us then prove that $\pi$ can be transformed in a proof $\pi'$ of same conclusion and such that, for any sequent, if it is well-typed then its premises are well-typed. |
|
300 |
|
|
301 |
\patrick{to be finished} |
|
302 |
\end{proof} |
|
303 |
|
|
304 |
\patrick{ TODO: define integer-positive sequents and proofs.} |
|
305 |
|
|
306 |
\begin{theorem} |
|
307 |
Assume the $\arith^i$ sequent calculus proves a closed formula $\forall \vec u^\normal . \forall \vec x^\safe . \exists y^\safe . A(\vec u ; \vec x , y)$. Then there exists a proof $\pi$ of the sequent |
|
308 |
$\normal(\vec u), \safe(\vec x) \seqar \exists y^\safe . A(\vec u ; \vec x , y)$ satisfying: |
|
309 |
\begin{enumerate} |
|
310 |
\item $\pi$ only contains $\Sigma^\safe_{i}$ formulas, |
|
311 |
\item $\pi$ is a well-typed and integer-positive proof. |
|
312 |
\end{enumerate} |
|
313 |
\end{theorem} |
Formats disponibles : Unified diff