Révision 178 CSL17/arithmetic.tex

arithmetic.tex (revision 178)
59 59
\end{definition}
60 60

  
61 61

  
62
\begin{definition}
62
\begin{definition}\label{def:ariththeory}
63 63
Define the theory $\arith^i$ consisting of the following axioms:
64 64
\begin{itemize}
65 65
	\item $\basic$;
......
215 215
\end{equation}
216 216
where $I=2$ and  in all cases, $t$ varies over arbitrary terms and the eigenvariable $a$ does not occur in the lower sequent of the $\pind$ rule.
217 217

  
218
Similarly the $\rais$ inference rule of Def. \ref{} is represented by the rule:
218
Similarly the $\rais$ inference rule of Def. \ref{def:ariththeory} is represented by the nonlogical rule:
219 219
 \[
220 220
 \begin{array}{cc}
221
    \vlinf{\rais}{}{ \Gamma , \Sigma' \seqar \Delta' , \Pi  }{ \{\Gamma , \Sigma_i \seqar \Delta_i , \Pi \}_{i \in I} }
221
    \vlinf{\rais}{}{  \Gamma \seqar \forall \vec x^\normal . \exists  y^\normal .  A , \Pi  }{ \Gamma \seqar \forall \vec x^\normal . \exists  y^\safe .  A,  \Pi }
222 222
\end{array}
223 223
\]
224
 The sequent calculus for $\arith^i$ is that of Fig. \ref{fig:sequentcalculus} extended with nonlogical rules for the axioms of $\basic$,  $\cpind{\Sigma^\safe_i } $ and $\rais$.
224 225
\subsection{Free-cut free normal form of proofs}
225 226
\todo{State theorem, with references (Takeuti, Cook-Nguyen) and present the important corollaries for this work.}
226 227

  
......
246 247
   \label{thm:free-cut-elim}
247 248
    Given a system  $\mathcal{S}$, any  $\mathcal{S}$-proof $\pi$ can be transformed into a $\system$-proof $\pi'$ with same end sequent and without any free-cut.
248 249
   \end{theorem}
249
   \todo{state as a corollary a suitable subformula property.}
250
%   \begin{proposition}
251
%   
252
%   \end{proposition}

Formats disponibles : Unified diff