Statistiques
| Révision :

root / CSL17 / arithmetic.tex @ 178

Historique | Voir | Annoter | Télécharger (12,12 ko)

1 166 adas
\section{An arithmetic for the polynomial hierarchy}
2 172 adas
Our base language is $\{ 0, \succ{} , + , \times, \smsh , |\cdot| , \leq \}$.
3 156 adas
4 171 adas
The $\basic$ axioms are as follows:
5 171 adas
\[
6 171 adas
\begin{array}{l}
7 171 adas
\safe (0) \\
8 172 adas
\forall x^\safe . \safe (\succ{} x) \\
9 172 adas
\forall x^\safe . 0 \neq \succ{} (x) \\
10 172 adas
\forall x^\safe , y^\safe . (\succ{} x = \succ{} y \cimp x = y) \\
11 176 adas
\forall x^\safe . (x = 0 \cor \exists y^\safe.\  x = \succ{} y   )\\
12 176 adas
\forall x^\safe, y^\safe . \safe(x+y)\\
13 176 adas
\forall u^\normal, x^\safe . \safe(u\times x) \\
14 176 adas
\forall u^\normal , v^\normal . \safe (u \smsh v)
15 171 adas
\end{array}
16 171 adas
\]
17 172 adas
\anupam{in fact, we use essentially the same language, so just take Buss' Basic axioms after proper typing. Should also add the symbol $\hlf{\cdot}$ for binary predecessor then we have the full language of bounded arithmetic.}
18 168 adas
19 172 adas
20 172 adas
21 172 adas
\begin{definition}
22 172 adas
[Derived functions and notations]
23 172 adas
We write $1,2,3,\dots$ for the terms $\succ{} 0, \succ{} \succ{} 0, \succ{} \succ{} \succ{} 0 \dots$, and frequently omit the $\times$ symbol.
24 172 adas
We define the functions $\succ 0 x , \succ 1 x$ as $2 x$ and $2x +1$ respectively.
25 176 adas
26 176 adas
Need $bit$, $\beta$ , $\pair{}{}{}$.
27 172 adas
\end{definition}
28 172 adas
29 157 adas
(Here use a variation of S12 with sharply bounded quantifiers and safe quantifiers)
30 157 adas
31 157 adas
Use base theory + sharply bounded quantifiers.
32 157 adas
33 157 adas
34 168 adas
35 168 adas
36 157 adas
\begin{definition}
37 157 adas
[Quantifier hierarchy]
38 176 adas
$\Sigma^\safe_0 = \Pi^\safe_0 $ is the set of formulae whose only quantifiers are sharply bounded.
39 176 adas
We define $\Sigma^\safe_{i+1}$ as the closure of $\Pi^\safe_i $ under $\cor, \cand $, safe existentials and sharply bounded quantifiers.
40 176 adas
We define $\Pi^\safe_{i+1}$ as the closure of $\Sigma^\safe_i $ under $\cor, \cand $, safe universals and sharply bounded quantifiers.
41 157 adas
\end{definition}
42 157 adas
43 168 adas
44 168 adas
\anupam{Collection principles for prenexing? Otherwise need to add closure under sharply bounded quantifiers.}
45 177 pbaillot
\begin{definition}\label{def:polynomialinduction}
46 177 pbaillot
[Polynomial induction]
47 177 pbaillot
The \emph{polynomial induction} axiom schema, $\pind$, consists of the following axioms,
48 177 pbaillot
\[
49 177 pbaillot
A(0)
50 177 pbaillot
\cimp (\forall x^{\normal} . ( A(x) \cimp A(\succ{0} x) ) )
51 177 pbaillot
\cimp  (\forall x^{\normal} . ( A(x) \cimp A(\succ{1} x) ) )
52 177 pbaillot
\cimp  \forall x^{\normal} . A(x)
53 177 pbaillot
\]
54 177 pbaillot
for each formula $A(x)$.
55 168 adas
56 177 pbaillot
For a class $\Xi$ of formulae, $\cax{\Xi}{\pind}$ denotes the set of induction axioms when $A(x) \in \Xi$.
57 168 adas
58 177 pbaillot
%We write $I\Xi$ to denote the theory consisting of $\basic$ and $\cax{\Xi}{\ind}$.
59 177 pbaillot
\end{definition}
60 177 pbaillot
61 177 pbaillot
62 178 pbaillot
\begin{definition}\label{def:ariththeory}
63 166 adas
Define the theory $\arith^i$ consisting of the following axioms:
64 166 adas
\begin{itemize}
65 166 adas
	\item $\basic$;
66 166 adas
	\item $\cpind{\Sigma^\safe_i } $:
67 166 adas
\end{itemize}
68 177 pbaillot
and an inference rule, called $\rais$:
69 168 adas
\[
70 168 adas
 \dfrac{\forall \vec x^\normal . \exists  y^\safe .  A }{ \forall \vec x^\normal .\exists y^\normal . A}
71 168 adas
\]
72 157 adas
\end{definition}
73 168 adas
\anupam{In induction,for inductive cases, need $u\neq 0$ for $\succ 0$ case.}
74 157 adas
75 157 adas
\begin{lemma}
76 157 adas
[Sharply bounded lemma]
77 157 adas
Let $f_A$ be the characteristic function of a predicate $A(u , \vec u ; \vec x)$.
78 157 adas
Then the characteristic functions of $\forall u \prefix v . A(u,\vec u ; \vec x)$ and $\exists u \prefix v . A(u , \vec u ; \vec x)$ are in $\bc(f_A)$.
79 157 adas
\end{lemma}
80 157 adas
\begin{proof}
81 157 adas
	We give the $\forall$ case, the $\exists$ case being dual.
82 157 adas
	The characteristic function $f(v , \vec u ; \vec x)$ is defined by predicative recursion on $v$ as:
83 157 adas
	\[
84 157 adas
	\begin{array}{rcl}
85 157 adas
	f(0, \vec u ; \vec x) & \dfn & f_A (0 , \vec u ; \vec x) \\
86 157 adas
	f(\succ i v , \vec u ; \vec x) & \dfn & \cond ( ; f_A (\succ i v, \vec u ; \vec x) , 0 , f(v , \vec u ; \vec x) )
87 157 adas
	\end{array}
88 157 adas
	\]
89 157 adas
\end{proof}
90 157 adas
91 157 adas
Notice that $\prefix$ suffices to encode usual sharply bounded inequalities,
92 168 adas
since $\forall u \leq |t| . A(u , \vec u ; \vec x) \ciff \forall u \prefix t . A(|u|, \vec u ; \vec x)$.
93 168 adas
94 168 adas
95 168 adas
\subsection{Graphs of some basic functions}
96 168 adas
Todo: $+1$,
97 168 adas
98 168 adas
\subsection{Encoding sequences in the arithmetic}
99 168 adas
\todo{}
100 168 adas
101 168 adas
\anupam{Assume we have a $\Sigma^\safe_1$ predicate $\beta(i,x,y)$, expressing that the $i$th element of the sequence $x$ is $y$, such that $\arith^1 \proves \forall i^\normal , x^\safe . \exists ! y^\safe . \beta (i,x,y)$.}
102 168 adas
103 168 adas
104 168 adas
\subsection{A sequent calculus presentation}
105 168 adas
\todo{Write out usual first-order sequent calculus}
106 168 adas
107 174 pbaillot
\begin{figure}
108 174 pbaillot
\[
109 174 pbaillot
\small
110 174 pbaillot
\begin{array}{l}
111 174 pbaillot
\begin{array}{cccc}
112 174 pbaillot
%\vlinf{\lefrul{\bot}}{}{p, \lnot{p} \seqar }{}
113 174 pbaillot
%& \vlinf{\id}{}{p \seqar p}{}
114 174 pbaillot
%& \vlinf{\rigrul{\bot}}{}{\seqar p, \lnot{p}}{}
115 174 pbaillot
%& \vliinf{\cut}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta, A }{\Sigma, A \seqar \Pi}
116 174 pbaillot
 \vlinf{id}{}{p \seqar p}{}
117 174 pbaillot
& \vliinf{cut}{}{\Gamma \seqar \Delta }{ \Gamma \seqar \Delta, A }{\Gamma, A \seqar \Delta}
118 174 pbaillot
&&
119 174 pbaillot
\\
120 174 pbaillot
\noalign{\bigskip}
121 174 pbaillot
%\noalign{\bigskip}
122 174 pbaillot
\vliinf{\lefrul{\cor}}{}{\Gamma, A \cor B \seqar \Delta}{\Gamma , A \seqar \Delta}{\Gamma, B \seqar \Delta}
123 174 pbaillot
&
124 174 pbaillot
\vlinf{\lefrul{\cand}}{}{\Gamma, A\cand B \seqar \Delta}{\Gamma, A , B \seqar \Delta}
125 174 pbaillot
&
126 174 pbaillot
%\vlinf{\lefrul{\laand}}{}{\Gamma, A\laand B \seqar \Delta}{\Gamma, B \seqar \Delta}
127 174 pbaillot
%\quad
128 174 pbaillot
\vlinf{\rigrul{\cor}}{}{\Gamma \seqar \Delta, A \cor B}{\Gamma \seqar \Delta, A, B}
129 174 pbaillot
&
130 174 pbaillot
%\vlinf{\rigrul{\laor}}{}{\Gamma \seqar \Delta, A\laor B}{\Gamma \seqar \Delta, B}
131 174 pbaillot
%\quad
132 174 pbaillot
\vliinf{\rigrul{\cand}}{}{\Gamma \seqar \Delta, A \cand B }{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, B}
133 174 pbaillot
\\
134 174 pbaillot
\noalign{\bigskip}
135 174 pbaillot
\vliinf{\lefrul{\cimp}}{}{\Gamma, A \cimp B \seqar \Delta}{\Gamma \seqar A, \Delta}{\Gamma, B \seqar \Delta}
136 174 pbaillot
&
137 174 pbaillot
\vlinf{\lefrul{\neg}}{}{\Gamma, \neg A \seqar \Delta}{\Gamma \seqar A, \Delta}
138 174 pbaillot
&
139 174 pbaillot
140 174 pbaillot
\vlinf{\rigrul{\cimp}}{}{\Gamma \seqar \Delta, A \cimp B}{\Gamma, A \seqar \Delta,  B}
141 174 pbaillot
&
142 174 pbaillot
143 174 pbaillot
\vlinf{\lefrul{\neg}}{}{\Gamma, \seqar \neg A, \Delta}{\Gamma, A \seqar  \Delta}
144 174 pbaillot
\\
145 174 pbaillot
146 174 pbaillot
\noalign{\bigskip}
147 174 pbaillot
%\text{Structural:} & & & \\
148 174 pbaillot
%\noalign{\bigskip}
149 174 pbaillot
150 174 pbaillot
\vlinf{\lefrul{\wk}}{}{\Gamma, A \seqar \Delta}{\Gamma \seqar \Delta}
151 174 pbaillot
&
152 174 pbaillot
\vlinf{\lefrul{\cntr}}{}{\Gamma, A \seqar \Delta}{\Gamma, A, A \seqar \Delta}
153 174 pbaillot
&
154 174 pbaillot
\vlinf{\rigrul{\wk}}{}{\Gamma \seqar \Delta, A }{\Gamma \seqar \Delta}
155 174 pbaillot
&
156 174 pbaillot
\vlinf{\rigrul{\cntr}}{}{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, A, A}
157 174 pbaillot
\\
158 174 pbaillot
\noalign{\bigskip}
159 174 pbaillot
\vlinf{\lefrul{\exists}}{}{\Gamma, \exists x . A(x) \seqar \Delta}{\Gamma, A(a) \seqar \Delta}
160 174 pbaillot
&
161 174 pbaillot
\vlinf{\lefrul{\forall}}{}{\Gamma, \forall x. A(x) \seqar \Delta}{\Gamma, A(t) \seqar \Delta}
162 174 pbaillot
&
163 174 pbaillot
\vlinf{\rigrul{\exists}}{}{\Gamma \seqar \Delta, \exists x . A(x)}{ \Gamma \seqar \Delta, A(t)}
164 174 pbaillot
&
165 174 pbaillot
\vlinf{\rigrul{\forall}}{}{\Gamma \seqar \Delta, \forall x . A(x)}{ \Gamma \seqar \Delta, A(a) } \\
166 174 pbaillot
%\noalign{\bigskip}
167 174 pbaillot
% \vliinf{mix}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta}{\Sigma \seqar \Pi} &&&
168 174 pbaillot
\end{array}
169 174 pbaillot
\end{array}
170 174 pbaillot
\]
171 174 pbaillot
\caption{Sequent calculus rules}\label{fig:sequentcalculus}
172 174 pbaillot
\end{figure}
173 174 pbaillot
 We denote sequence as $\Gamma \seqar \Delta$ where $\Gamma$, $\Delta$ are multi sets of formulas. The sequent calculus rules are displayed on Fig. \ref{fig:sequentcalculus},  where $p$ is atomic, $i \in \{ 1,2 \}$, $t$ is a term and the eigenvariable $a$ does not occur free in $\Gamma$ or $\Delta$.
174 174 pbaillot
175 174 pbaillot
We consider \emph{systems} of `nonlogical' rules extending this sequent calculus, which we write as follows,
176 174 pbaillot
 \[
177 174 pbaillot
 \begin{array}{cc}
178 174 pbaillot
    \vlinf{(R)}{}{ \Gamma , \Sigma' \seqar \Delta' , \Pi  }{ \{\Gamma , \Sigma_i \seqar \Delta_i , \Pi \}_{i \in I} }
179 174 pbaillot
\end{array}
180 174 pbaillot
\]
181 174 pbaillot
 where, in each rule $(R)$, $I$ is a finite possibly empty set (indicating the number of premises) and we assume the following conditions and terminology:
182 174 pbaillot
 \begin{enumerate}
183 174 pbaillot
 \item In $(R)$ the formulas of $\Sigma', \Delta'$  are called \textit{principal}, those of $\Sigma_i, \Delta_i$ are called \textit{active}, and those of
184 174 pbaillot
$ \Gamma,  \Pi$ are called \textit{context formulas}.
185 174 pbaillot
\item Each rule $(R)$ comes with a list $a_1$, \dots, $a_k$ of eigenvariables such that each $a_j$ appears in exactly one $\Sigma_i, \Delta_i$ (so in some active formulas of exactly one premise)  and does not appear in  $\Sigma', \Delta'$ or $ \Gamma,  \Pi$.
186 174 pbaillot
    \item A system $\mathcal{S}$ of rules must be closed under substitutions of free variables by terms (where these substitutions do not contain the eigenvariables $a_j$ in their domain or codomain).
187 174 pbaillot
   \end{enumerate}
188 174 pbaillot
189 174 pbaillot
%The distinction between modal and nonmodal formulae in $(R)$ induces condition 1
190 174 pbaillot
 Conditions 2 and 3 are standard requirements for nonlogical rules, independently of the logical setting, cf.\ \cite{Beckmann11}. Condition 2 reflects the intuitive idea that, in our nonlogical rules, we often need a notion of \textit{bound} variables in the active formulas (typically for induction rules), for which we rely on eigenvariables. Condition 3 is needed for our proof system to admit elimination of cuts on quantified formulas.
191 174 pbaillot
192 177 pbaillot
%\begin{definition}
193 177 pbaillot
%[Polynomial induction]
194 177 pbaillot
%The \emph{polynomial induction} axiom schema, $\pind$, consists of the following axioms,
195 177 pbaillot
%\[
196 177 pbaillot
%A(0)
197 177 pbaillot
%\cimp (\forall x^{\normal} . ( A(x) \cimp A(\succ{0} x) ) )
198 177 pbaillot
%\cimp  (\forall x^{\normal} . ( A(x) \cimp A(\succ{1} x) ) )
199 177 pbaillot
%\cimp  \forall x^{\normal} . A(x)
200 177 pbaillot
%\]
201 177 pbaillot
%for each formula $A(x)$.
202 177 pbaillot
%
203 177 pbaillot
%For a class $\Xi$ of formulae, $\cax{\Xi}{\pind}$ denotes the set of induction axioms when $A(x) \in \Xi$.
204 177 pbaillot
%
205 177 pbaillot
%We write $I\Xi$ to denote the theory consisting of $\basic$ and $\cax{\Xi}{\ind}$.
206 177 pbaillot
%\end{definition}
207 174 pbaillot
208 177 pbaillot
As an example any axiom can be represented by such a nonlogical rule $(R)$, with no premise ($I=\emptyset$), $\Delta'$ equal to the axiom and $\Gamma=\Sigma'=\Pi$. For instance the axiom $\pind$ of Def. \ref{def:polynomialinduction}.
209 177 pbaillot
210 177 pbaillot
Actually  $\pind$ is equivalent to the following rule:
211 177 pbaillot
\begin{equation}
212 177 pbaillot
\label{eqn:ind-rule}
213 177 pbaillot
\small
214 177 pbaillot
\vliinf{\pind}{}{ \normal(t) , \Gamma , A(0) \seqar A(t), \Delta }{ \normal(a) , \Gamma, A(a) \seqar A(\succ{0} a) , \Delta }{ \normal(a) , \Gamma, A(a) \seqar A(\succ{1} a) , \Delta  }
215 177 pbaillot
\end{equation}
216 177 pbaillot
where $I=2$ and  in all cases, $t$ varies over arbitrary terms and the eigenvariable $a$ does not occur in the lower sequent of the $\pind$ rule.
217 177 pbaillot
218 178 pbaillot
Similarly the $\rais$ inference rule of Def. \ref{def:ariththeory} is represented by the nonlogical rule:
219 177 pbaillot
 \[
220 177 pbaillot
 \begin{array}{cc}
221 178 pbaillot
    \vlinf{\rais}{}{  \Gamma \seqar \forall \vec x^\normal . \exists  y^\normal .  A , \Pi  }{ \Gamma \seqar \forall \vec x^\normal . \exists  y^\safe .  A,  \Pi }
222 177 pbaillot
\end{array}
223 177 pbaillot
\]
224 178 pbaillot
 The sequent calculus for $\arith^i$ is that of Fig. \ref{fig:sequentcalculus} extended with nonlogical rules for the axioms of $\basic$,  $\cpind{\Sigma^\safe_i } $ and $\rais$.
225 168 adas
\subsection{Free-cut free normal form of proofs}
226 174 pbaillot
\todo{State theorem, with references (Takeuti, Cook-Nguyen) and present the important corollaries for this work.}
227 175 pbaillot
228 174 pbaillot
Since our nonlogical rules may have many principal formulae on which cuts may be anchored, we need a slightly more general notion of principality.
229 174 pbaillot
    \begin{definition}\label{def:anchoredcut}
230 174 pbaillot
  We define the notions of \textit{hereditarily principal formula} and \textit{anchored cut} in a $\system$-proof, for a system $\system$, by mutual induction as follows:
231 174 pbaillot
  \begin{itemize}
232 174 pbaillot
  \item A formula $A$ in a sequent $\Gamma \seqar \Delta$ is \textit{hereditarily principal} for a rule instance (S) if either (i) the sequent is in the conclusion of (S) and $A$ is principal in it, or
233 174 pbaillot
(ii)  the sequent is in the conclusion of an anchored cut, the direct ancestor of $A$ in the corresponding premise is hereditarily principal for the rule instance (S), and the rule (S) is nonlogical.
234 174 pbaillot
  \item A cut-step is an \textit{anchored cut} if the two occurrences of its cut-formula $A$ in each premise are hereditarily principal for nonlogical steps, or one is hereditarily principal for a nonlogical step and the other one is principal for a logical step.
235 174 pbaillot
  \end{itemize}
236 174 pbaillot
     A cut which is not anchored will also be called a \textit{free-cut}.
237 174 pbaillot
  \end{definition}
238 174 pbaillot
  As a consequence of this definition, an anchored cut on a formula $A$ has the following properties:
239 174 pbaillot
  \begin{itemize}
240 174 pbaillot
  \item At least one of the two premises of the cut has above it a sub-branch of the proof which starts (top-down) with a nonlogical step (R) with $A$ as one of its principal formulas, and then a sequence of anchored cuts in which $A$ is part of the context.
241 174 pbaillot
  \item The other premise is either of the same form or is a logical step with principal formula $A$.
242 174 pbaillot
  \end{itemize}
243 174 pbaillot
244 174 pbaillot
   Now we have (see \cite{Takeuti87}):
245 174 pbaillot
   \begin{theorem}
246 174 pbaillot
   [Free-cut elimination]
247 174 pbaillot
   \label{thm:free-cut-elim}
248 174 pbaillot
    Given a system  $\mathcal{S}$, any  $\mathcal{S}$-proof $\pi$ can be transformed into a $\system$-proof $\pi'$ with same end sequent and without any free-cut.
249 175 pbaillot
   \end{theorem}
250 178 pbaillot
%   \begin{proposition}
251 178 pbaillot
%
252 178 pbaillot
%   \end{proposition}