Statistiques
| Révision :

root / CSL17 / arithmetic.tex @ 177

Historique | Voir | Annoter | Télécharger (11,87 ko)

1
\section{An arithmetic for the polynomial hierarchy}
2
Our base language is $\{ 0, \succ{} , + , \times, \smsh , |\cdot| , \leq \}$.
3

    
4
The $\basic$ axioms are as follows:
5
\[
6
\begin{array}{l}
7
\safe (0) \\
8
\forall x^\safe . \safe (\succ{} x) \\
9
\forall x^\safe . 0 \neq \succ{} (x) \\
10
\forall x^\safe , y^\safe . (\succ{} x = \succ{} y \cimp x = y) \\
11
\forall x^\safe . (x = 0 \cor \exists y^\safe.\  x = \succ{} y   )\\
12
\forall x^\safe, y^\safe . \safe(x+y)\\
13
\forall u^\normal, x^\safe . \safe(u\times x) \\
14
\forall u^\normal , v^\normal . \safe (u \smsh v)
15
\end{array}
16
\]
17
\anupam{in fact, we use essentially the same language, so just take Buss' Basic axioms after proper typing. Should also add the symbol $\hlf{\cdot}$ for binary predecessor then we have the full language of bounded arithmetic.}
18

    
19

    
20

    
21
\begin{definition}
22
[Derived functions and notations]
23
We write $1,2,3,\dots$ for the terms $\succ{} 0, \succ{} \succ{} 0, \succ{} \succ{} \succ{} 0 \dots$, and frequently omit the $\times$ symbol.
24
We define the functions $\succ 0 x , \succ 1 x$ as $2 x$ and $2x +1$ respectively.
25

    
26
Need $bit$, $\beta$ , $\pair{}{}{}$.
27
\end{definition}
28

    
29
(Here use a variation of S12 with sharply bounded quantifiers and safe quantifiers)
30

    
31
Use base theory + sharply bounded quantifiers.
32

    
33

    
34

    
35

    
36
\begin{definition}
37
[Quantifier hierarchy]
38
$\Sigma^\safe_0 = \Pi^\safe_0 $ is the set of formulae whose only quantifiers are sharply bounded.
39
We define $\Sigma^\safe_{i+1}$ as the closure of $\Pi^\safe_i $ under $\cor, \cand $, safe existentials and sharply bounded quantifiers.
40
We define $\Pi^\safe_{i+1}$ as the closure of $\Sigma^\safe_i $ under $\cor, \cand $, safe universals and sharply bounded quantifiers.
41
\end{definition}
42

    
43

    
44
\anupam{Collection principles for prenexing? Otherwise need to add closure under sharply bounded quantifiers.}
45
\begin{definition}\label{def:polynomialinduction}
46
[Polynomial induction]
47
The \emph{polynomial induction} axiom schema, $\pind$, consists of the following axioms,
48
\[
49
A(0) 
50
\cimp (\forall x^{\normal} . ( A(x) \cimp A(\succ{0} x) ) )
51
\cimp  (\forall x^{\normal} . ( A(x) \cimp A(\succ{1} x) ) ) 
52
\cimp  \forall x^{\normal} . A(x)
53
\]
54
for each formula $A(x)$.
55

    
56
For a class $\Xi$ of formulae, $\cax{\Xi}{\pind}$ denotes the set of induction axioms when $A(x) \in \Xi$. 
57

    
58
%We write $I\Xi$ to denote the theory consisting of $\basic$ and $\cax{\Xi}{\ind}$.
59
\end{definition}
60

    
61

    
62
\begin{definition}
63
Define the theory $\arith^i$ consisting of the following axioms:
64
\begin{itemize}
65
	\item $\basic$;
66
	\item $\cpind{\Sigma^\safe_i } $:
67
\end{itemize}
68
and an inference rule, called $\rais$:
69
\[
70
 \dfrac{\forall \vec x^\normal . \exists  y^\safe .  A }{ \forall \vec x^\normal .\exists y^\normal . A}
71
\]
72
\end{definition}
73
\anupam{In induction,for inductive cases, need $u\neq 0$ for $\succ 0$ case.}
74

    
75
\begin{lemma}
76
[Sharply bounded lemma]
77
Let $f_A$ be the characteristic function of a predicate $A(u , \vec u ; \vec x)$.
78
Then the characteristic functions of $\forall u \prefix v . A(u,\vec u ; \vec x)$ and $\exists u \prefix v . A(u , \vec u ; \vec x)$ are in $\bc(f_A)$.
79
\end{lemma}
80
\begin{proof}
81
	We give the $\forall$ case, the $\exists$ case being dual.
82
	The characteristic function $f(v , \vec u ; \vec x)$ is defined by predicative recursion on $v$ as:
83
	\[
84
	\begin{array}{rcl}
85
	f(0, \vec u ; \vec x) & \dfn & f_A (0 , \vec u ; \vec x) \\
86
	f(\succ i v , \vec u ; \vec x) & \dfn & \cond ( ; f_A (\succ i v, \vec u ; \vec x) , 0 , f(v , \vec u ; \vec x) )
87
	\end{array}
88
	\]
89
\end{proof}
90

    
91
Notice that $\prefix$ suffices to encode usual sharply bounded inequalities,
92
since $\forall u \leq |t| . A(u , \vec u ; \vec x) \ciff \forall u \prefix t . A(|u|, \vec u ; \vec x)$.
93

    
94

    
95
\subsection{Graphs of some basic functions}
96
Todo: $+1$,  
97

    
98
\subsection{Encoding sequences in the arithmetic}
99
\todo{}
100

    
101
\anupam{Assume we have a $\Sigma^\safe_1$ predicate $\beta(i,x,y)$, expressing that the $i$th element of the sequence $x$ is $y$, such that $\arith^1 \proves \forall i^\normal , x^\safe . \exists ! y^\safe . \beta (i,x,y)$.}
102

    
103

    
104
\subsection{A sequent calculus presentation}
105
\todo{Write out usual first-order sequent calculus}
106

    
107
\begin{figure}
108
\[
109
\small
110
\begin{array}{l}
111
\begin{array}{cccc}
112
%\vlinf{\lefrul{\bot}}{}{p, \lnot{p} \seqar }{}
113
%& \vlinf{\id}{}{p \seqar p}{}
114
%& \vlinf{\rigrul{\bot}}{}{\seqar p, \lnot{p}}{}
115
%& \vliinf{\cut}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta, A }{\Sigma, A \seqar \Pi}
116
 \vlinf{id}{}{p \seqar p}{}
117
& \vliinf{cut}{}{\Gamma \seqar \Delta }{ \Gamma \seqar \Delta, A }{\Gamma, A \seqar \Delta}
118
&&
119
\\
120
\noalign{\bigskip}
121
%\noalign{\bigskip}
122
\vliinf{\lefrul{\cor}}{}{\Gamma, A \cor B \seqar \Delta}{\Gamma , A \seqar \Delta}{\Gamma, B \seqar \Delta}
123
&
124
\vlinf{\lefrul{\cand}}{}{\Gamma, A\cand B \seqar \Delta}{\Gamma, A , B \seqar \Delta}
125
&
126
%\vlinf{\lefrul{\laand}}{}{\Gamma, A\laand B \seqar \Delta}{\Gamma, B \seqar \Delta}
127
%\quad
128
\vlinf{\rigrul{\cor}}{}{\Gamma \seqar \Delta, A \cor B}{\Gamma \seqar \Delta, A, B}
129
&
130
%\vlinf{\rigrul{\laor}}{}{\Gamma \seqar \Delta, A\laor B}{\Gamma \seqar \Delta, B}
131
%\quad
132
\vliinf{\rigrul{\cand}}{}{\Gamma \seqar \Delta, A \cand B }{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, B}
133
\\
134
\noalign{\bigskip}
135
\vliinf{\lefrul{\cimp}}{}{\Gamma, A \cimp B \seqar \Delta}{\Gamma \seqar A, \Delta}{\Gamma, B \seqar \Delta}
136
&
137
\vlinf{\lefrul{\neg}}{}{\Gamma, \neg A \seqar \Delta}{\Gamma \seqar A, \Delta}
138
&
139

    
140
\vlinf{\rigrul{\cimp}}{}{\Gamma \seqar \Delta, A \cimp B}{\Gamma, A \seqar \Delta,  B}
141
&
142

    
143
\vlinf{\lefrul{\neg}}{}{\Gamma, \seqar \neg A, \Delta}{\Gamma, A \seqar  \Delta}
144
\\
145

    
146
\noalign{\bigskip}
147
%\text{Structural:} & & & \\
148
%\noalign{\bigskip}
149

    
150
\vlinf{\lefrul{\wk}}{}{\Gamma, A \seqar \Delta}{\Gamma \seqar \Delta}
151
&
152
\vlinf{\lefrul{\cntr}}{}{\Gamma, A \seqar \Delta}{\Gamma, A, A \seqar \Delta}
153
&
154
\vlinf{\rigrul{\wk}}{}{\Gamma \seqar \Delta, A }{\Gamma \seqar \Delta}
155
&
156
\vlinf{\rigrul{\cntr}}{}{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, A, A}
157
\\
158
\noalign{\bigskip}
159
\vlinf{\lefrul{\exists}}{}{\Gamma, \exists x . A(x) \seqar \Delta}{\Gamma, A(a) \seqar \Delta}
160
&
161
\vlinf{\lefrul{\forall}}{}{\Gamma, \forall x. A(x) \seqar \Delta}{\Gamma, A(t) \seqar \Delta}
162
&
163
\vlinf{\rigrul{\exists}}{}{\Gamma \seqar \Delta, \exists x . A(x)}{ \Gamma \seqar \Delta, A(t)}
164
&
165
\vlinf{\rigrul{\forall}}{}{\Gamma \seqar \Delta, \forall x . A(x)}{ \Gamma \seqar \Delta, A(a) } \\
166
%\noalign{\bigskip}
167
% \vliinf{mix}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta}{\Sigma \seqar \Pi} &&&
168
\end{array}
169
\end{array}
170
\]
171
\caption{Sequent calculus rules}\label{fig:sequentcalculus}
172
\end{figure}
173
 We denote sequence as $\Gamma \seqar \Delta$ where $\Gamma$, $\Delta$ are multi sets of formulas. The sequent calculus rules are displayed on Fig. \ref{fig:sequentcalculus},  where $p$ is atomic, $i \in \{ 1,2 \}$, $t$ is a term and the eigenvariable $a$ does not occur free in $\Gamma$ or $\Delta$.
174

    
175
We consider \emph{systems} of `nonlogical' rules extending this sequent calculus, which we write as follows,
176
 \[
177
 \begin{array}{cc}
178
    \vlinf{(R)}{}{ \Gamma , \Sigma' \seqar \Delta' , \Pi  }{ \{\Gamma , \Sigma_i \seqar \Delta_i , \Pi \}_{i \in I} }
179
\end{array}
180
\]
181
 where, in each rule $(R)$, $I$ is a finite possibly empty set (indicating the number of premises) and we assume the following conditions and terminology:
182
 \begin{enumerate}
183
 \item In $(R)$ the formulas of $\Sigma', \Delta'$  are called \textit{principal}, those of $\Sigma_i, \Delta_i$ are called \textit{active}, and those of   
184
$ \Gamma,  \Pi$ are called \textit{context formulas}. 
185
\item Each rule $(R)$ comes with a list $a_1$, \dots, $a_k$ of eigenvariables such that each $a_j$ appears in exactly one $\Sigma_i, \Delta_i$ (so in some active formulas of exactly one premise)  and does not appear in  $\Sigma', \Delta'$ or $ \Gamma,  \Pi$.
186
    \item A system $\mathcal{S}$ of rules must be closed under substitutions of free variables by terms (where these substitutions do not contain the eigenvariables $a_j$ in their domain or codomain).  
187
   \end{enumerate}
188
 
189
%The distinction between modal and nonmodal formulae in $(R)$ induces condition 1
190
 Conditions 2 and 3 are standard requirements for nonlogical rules, independently of the logical setting, cf.\ \cite{Beckmann11}. Condition 2 reflects the intuitive idea that, in our nonlogical rules, we often need a notion of \textit{bound} variables in the active formulas (typically for induction rules), for which we rely on eigenvariables. Condition 3 is needed for our proof system to admit elimination of cuts on quantified formulas.
191

    
192
%\begin{definition}
193
%[Polynomial induction]
194
%The \emph{polynomial induction} axiom schema, $\pind$, consists of the following axioms,
195
%\[
196
%A(0) 
197
%\cimp (\forall x^{\normal} . ( A(x) \cimp A(\succ{0} x) ) )
198
%\cimp  (\forall x^{\normal} . ( A(x) \cimp A(\succ{1} x) ) ) 
199
%\cimp  \forall x^{\normal} . A(x)
200
%\]
201
%for each formula $A(x)$.
202
%
203
%For a class $\Xi$ of formulae, $\cax{\Xi}{\pind}$ denotes the set of induction axioms when $A(x) \in \Xi$. 
204
%
205
%We write $I\Xi$ to denote the theory consisting of $\basic$ and $\cax{\Xi}{\ind}$.
206
%\end{definition}
207

    
208
As an example any axiom can be represented by such a nonlogical rule $(R)$, with no premise ($I=\emptyset$), $\Delta'$ equal to the axiom and $\Gamma=\Sigma'=\Pi$. For instance the axiom $\pind$ of Def. \ref{def:polynomialinduction}.
209

    
210
Actually  $\pind$ is equivalent to the following rule:
211
\begin{equation}
212
\label{eqn:ind-rule}
213
\small
214
\vliinf{\pind}{}{ \normal(t) , \Gamma , A(0) \seqar A(t), \Delta }{ \normal(a) , \Gamma, A(a) \seqar A(\succ{0} a) , \Delta }{ \normal(a) , \Gamma, A(a) \seqar A(\succ{1} a) , \Delta  }
215
\end{equation}
216
where $I=2$ and  in all cases, $t$ varies over arbitrary terms and the eigenvariable $a$ does not occur in the lower sequent of the $\pind$ rule.
217

    
218
Similarly the $\rais$ inference rule of Def. \ref{} is represented by the rule:
219
 \[
220
 \begin{array}{cc}
221
    \vlinf{\rais}{}{ \Gamma , \Sigma' \seqar \Delta' , \Pi  }{ \{\Gamma , \Sigma_i \seqar \Delta_i , \Pi \}_{i \in I} }
222
\end{array}
223
\]
224
\subsection{Free-cut free normal form of proofs}
225
\todo{State theorem, with references (Takeuti, Cook-Nguyen) and present the important corollaries for this work.}
226

    
227
Since our nonlogical rules may have many principal formulae on which cuts may be anchored, we need a slightly more general notion of principality.
228
    \begin{definition}\label{def:anchoredcut}
229
  We define the notions of \textit{hereditarily principal formula} and \textit{anchored cut} in a $\system$-proof, for a system $\system$, by mutual induction as follows:
230
  \begin{itemize}
231
  \item A formula $A$ in a sequent $\Gamma \seqar \Delta$ is \textit{hereditarily principal} for a rule instance (S) if either (i) the sequent is in the conclusion of (S) and $A$ is principal in it, or 
232
(ii)  the sequent is in the conclusion of an anchored cut, the direct ancestor of $A$ in the corresponding premise is hereditarily principal for the rule instance (S), and the rule (S) is nonlogical.
233
  \item A cut-step is an \textit{anchored cut} if the two occurrences of its cut-formula $A$ in each premise are hereditarily principal for nonlogical steps, or one is hereditarily principal for a nonlogical step and the other one is principal for a logical step.
234
  \end{itemize}
235
     A cut which is not anchored will also be called a \textit{free-cut}.
236
  \end{definition}
237
  As a consequence of this definition, an anchored cut on a formula $A$ has the following properties:
238
  \begin{itemize}
239
  \item At least one of the two premises of the cut has above it a sub-branch of the proof which starts (top-down) with a nonlogical step (R) with $A$ as one of its principal formulas, and then a sequence of anchored cuts in which $A$ is part of the context.
240
  \item The other premise is either of the same form or is a logical step with principal formula $A$. 
241
  \end{itemize}
242
   
243
   Now we have (see \cite{Takeuti87}): 
244
   \begin{theorem}
245
   [Free-cut elimination]
246
   \label{thm:free-cut-elim}
247
    Given a system  $\mathcal{S}$, any  $\mathcal{S}$-proof $\pi$ can be transformed into a $\system$-proof $\pi'$ with same end sequent and without any free-cut.
248
   \end{theorem}
249
   \todo{state as a corollary a suitable subformula property.}