root / CSL17 / arithmetic.tex @ 176
Historique | Voir | Annoter | Télécharger (9,86 ko)
1 |
\section{An arithmetic for the polynomial hierarchy} |
---|---|
2 |
Our base language is $\{ 0, \succ{} , + , \times, \smsh , |\cdot| , \leq \}$. |
3 |
|
4 |
The $\basic$ axioms are as follows: |
5 |
\[ |
6 |
\begin{array}{l} |
7 |
\safe (0) \\ |
8 |
\forall x^\safe . \safe (\succ{} x) \\ |
9 |
\forall x^\safe . 0 \neq \succ{} (x) \\ |
10 |
\forall x^\safe , y^\safe . (\succ{} x = \succ{} y \cimp x = y) \\ |
11 |
\forall x^\safe . (x = 0 \cor \exists y^\safe.\ x = \succ{} y )\\ |
12 |
\forall x^\safe, y^\safe . \safe(x+y)\\ |
13 |
\forall u^\normal, x^\safe . \safe(u\times x) \\ |
14 |
\forall u^\normal , v^\normal . \safe (u \smsh v) |
15 |
\end{array} |
16 |
\] |
17 |
\anupam{in fact, we use essentially the same language, so just take Buss' Basic axioms after proper typing. Should also add the symbol $\hlf{\cdot}$ for binary predecessor then we have the full language of bounded arithmetic.} |
18 |
|
19 |
|
20 |
|
21 |
\begin{definition} |
22 |
[Derived functions and notations] |
23 |
We write $1,2,3,\dots$ for the terms $\succ{} 0, \succ{} \succ{} 0, \succ{} \succ{} \succ{} 0 \dots$, and frequently omit the $\times$ symbol. |
24 |
We define the functions $\succ 0 x , \succ 1 x$ as $2 x$ and $2x +1$ respectively. |
25 |
|
26 |
Need $bit$, $\beta$ , $\pair{}{}{}$. |
27 |
\end{definition} |
28 |
|
29 |
(Here use a variation of S12 with sharply bounded quantifiers and safe quantifiers) |
30 |
|
31 |
Use base theory + sharply bounded quantifiers. |
32 |
|
33 |
|
34 |
|
35 |
|
36 |
\begin{definition} |
37 |
[Quantifier hierarchy] |
38 |
$\Sigma^\safe_0 = \Pi^\safe_0 $ is the set of formulae whose only quantifiers are sharply bounded. |
39 |
We define $\Sigma^\safe_{i+1}$ as the closure of $\Pi^\safe_i $ under $\cor, \cand $, safe existentials and sharply bounded quantifiers. |
40 |
We define $\Pi^\safe_{i+1}$ as the closure of $\Sigma^\safe_i $ under $\cor, \cand $, safe universals and sharply bounded quantifiers. |
41 |
\end{definition} |
42 |
|
43 |
|
44 |
\anupam{Collection principles for prenexing? Otherwise need to add closure under sharply bounded quantifiers.} |
45 |
|
46 |
|
47 |
\begin{definition} |
48 |
Define the theory $\arith^i$ consisting of the following axioms: |
49 |
\begin{itemize} |
50 |
\item $\basic$; |
51 |
\item $\cpind{\Sigma^\safe_i } $: |
52 |
\end{itemize} |
53 |
and an inference rule: |
54 |
\[ |
55 |
\dfrac{\forall \vec x^\normal . \exists y^\safe . A }{ \forall \vec x^\normal .\exists y^\normal . A} |
56 |
\] |
57 |
\end{definition} |
58 |
\anupam{In induction,for inductive cases, need $u\neq 0$ for $\succ 0$ case.} |
59 |
|
60 |
\begin{lemma} |
61 |
[Sharply bounded lemma] |
62 |
Let $f_A$ be the characteristic function of a predicate $A(u , \vec u ; \vec x)$. |
63 |
Then the characteristic functions of $\forall u \prefix v . A(u,\vec u ; \vec x)$ and $\exists u \prefix v . A(u , \vec u ; \vec x)$ are in $\bc(f_A)$. |
64 |
\end{lemma} |
65 |
\begin{proof} |
66 |
We give the $\forall$ case, the $\exists$ case being dual. |
67 |
The characteristic function $f(v , \vec u ; \vec x)$ is defined by predicative recursion on $v$ as: |
68 |
\[ |
69 |
\begin{array}{rcl} |
70 |
f(0, \vec u ; \vec x) & \dfn & f_A (0 , \vec u ; \vec x) \\ |
71 |
f(\succ i v , \vec u ; \vec x) & \dfn & \cond ( ; f_A (\succ i v, \vec u ; \vec x) , 0 , f(v , \vec u ; \vec x) ) |
72 |
\end{array} |
73 |
\] |
74 |
\end{proof} |
75 |
|
76 |
Notice that $\prefix$ suffices to encode usual sharply bounded inequalities, |
77 |
since $\forall u \leq |t| . A(u , \vec u ; \vec x) \ciff \forall u \prefix t . A(|u|, \vec u ; \vec x)$. |
78 |
|
79 |
|
80 |
\subsection{Graphs of some basic functions} |
81 |
Todo: $+1$, |
82 |
|
83 |
\subsection{Encoding sequences in the arithmetic} |
84 |
\todo{} |
85 |
|
86 |
\anupam{Assume we have a $\Sigma^\safe_1$ predicate $\beta(i,x,y)$, expressing that the $i$th element of the sequence $x$ is $y$, such that $\arith^1 \proves \forall i^\normal , x^\safe . \exists ! y^\safe . \beta (i,x,y)$.} |
87 |
|
88 |
|
89 |
\subsection{A sequent calculus presentation} |
90 |
\todo{Write out usual first-order sequent calculus} |
91 |
|
92 |
\begin{figure} |
93 |
\[ |
94 |
\small |
95 |
\begin{array}{l} |
96 |
\begin{array}{cccc} |
97 |
%\vlinf{\lefrul{\bot}}{}{p, \lnot{p} \seqar }{} |
98 |
%& \vlinf{\id}{}{p \seqar p}{} |
99 |
%& \vlinf{\rigrul{\bot}}{}{\seqar p, \lnot{p}}{} |
100 |
%& \vliinf{\cut}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta, A }{\Sigma, A \seqar \Pi} |
101 |
\vlinf{id}{}{p \seqar p}{} |
102 |
& \vliinf{cut}{}{\Gamma \seqar \Delta }{ \Gamma \seqar \Delta, A }{\Gamma, A \seqar \Delta} |
103 |
&& |
104 |
\\ |
105 |
\noalign{\bigskip} |
106 |
%\noalign{\bigskip} |
107 |
\vliinf{\lefrul{\cor}}{}{\Gamma, A \cor B \seqar \Delta}{\Gamma , A \seqar \Delta}{\Gamma, B \seqar \Delta} |
108 |
& |
109 |
\vlinf{\lefrul{\cand}}{}{\Gamma, A\cand B \seqar \Delta}{\Gamma, A , B \seqar \Delta} |
110 |
& |
111 |
%\vlinf{\lefrul{\laand}}{}{\Gamma, A\laand B \seqar \Delta}{\Gamma, B \seqar \Delta} |
112 |
%\quad |
113 |
\vlinf{\rigrul{\cor}}{}{\Gamma \seqar \Delta, A \cor B}{\Gamma \seqar \Delta, A, B} |
114 |
& |
115 |
%\vlinf{\rigrul{\laor}}{}{\Gamma \seqar \Delta, A\laor B}{\Gamma \seqar \Delta, B} |
116 |
%\quad |
117 |
\vliinf{\rigrul{\cand}}{}{\Gamma \seqar \Delta, A \cand B }{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, B} |
118 |
\\ |
119 |
\noalign{\bigskip} |
120 |
\vliinf{\lefrul{\cimp}}{}{\Gamma, A \cimp B \seqar \Delta}{\Gamma \seqar A, \Delta}{\Gamma, B \seqar \Delta} |
121 |
& |
122 |
\vlinf{\lefrul{\neg}}{}{\Gamma, \neg A \seqar \Delta}{\Gamma \seqar A, \Delta} |
123 |
& |
124 |
|
125 |
\vlinf{\rigrul{\cimp}}{}{\Gamma \seqar \Delta, A \cimp B}{\Gamma, A \seqar \Delta, B} |
126 |
& |
127 |
|
128 |
\vlinf{\lefrul{\neg}}{}{\Gamma, \seqar \neg A, \Delta}{\Gamma, A \seqar \Delta} |
129 |
\\ |
130 |
|
131 |
\noalign{\bigskip} |
132 |
%\text{Structural:} & & & \\ |
133 |
%\noalign{\bigskip} |
134 |
|
135 |
\vlinf{\lefrul{\wk}}{}{\Gamma, A \seqar \Delta}{\Gamma \seqar \Delta} |
136 |
& |
137 |
\vlinf{\lefrul{\cntr}}{}{\Gamma, A \seqar \Delta}{\Gamma, A, A \seqar \Delta} |
138 |
& |
139 |
\vlinf{\rigrul{\wk}}{}{\Gamma \seqar \Delta, A }{\Gamma \seqar \Delta} |
140 |
& |
141 |
\vlinf{\rigrul{\cntr}}{}{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, A, A} |
142 |
\\ |
143 |
\noalign{\bigskip} |
144 |
\vlinf{\lefrul{\exists}}{}{\Gamma, \exists x . A(x) \seqar \Delta}{\Gamma, A(a) \seqar \Delta} |
145 |
& |
146 |
\vlinf{\lefrul{\forall}}{}{\Gamma, \forall x. A(x) \seqar \Delta}{\Gamma, A(t) \seqar \Delta} |
147 |
& |
148 |
\vlinf{\rigrul{\exists}}{}{\Gamma \seqar \Delta, \exists x . A(x)}{ \Gamma \seqar \Delta, A(t)} |
149 |
& |
150 |
\vlinf{\rigrul{\forall}}{}{\Gamma \seqar \Delta, \forall x . A(x)}{ \Gamma \seqar \Delta, A(a) } \\ |
151 |
%\noalign{\bigskip} |
152 |
% \vliinf{mix}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta}{\Sigma \seqar \Pi} &&& |
153 |
\end{array} |
154 |
\end{array} |
155 |
\] |
156 |
\caption{Sequent calculus rules}\label{fig:sequentcalculus} |
157 |
\end{figure} |
158 |
We denote sequence as $\Gamma \seqar \Delta$ where $\Gamma$, $\Delta$ are multi sets of formulas. The sequent calculus rules are displayed on Fig. \ref{fig:sequentcalculus}, where $p$ is atomic, $i \in \{ 1,2 \}$, $t$ is a term and the eigenvariable $a$ does not occur free in $\Gamma$ or $\Delta$. |
159 |
|
160 |
We consider \emph{systems} of `nonlogical' rules extending this sequent calculus, which we write as follows, |
161 |
\[ |
162 |
\begin{array}{cc} |
163 |
\vlinf{(R)}{}{ \Gamma , \Sigma' \seqar \Delta' , \Pi }{ \{\Gamma , \Sigma_i \seqar \Delta_i , \Pi \}_{i \in I} } |
164 |
\end{array} |
165 |
\] |
166 |
where, in each rule $(R)$, $I$ is a finite possibly empty set (indicating the number of premises) and we assume the following conditions and terminology: |
167 |
\begin{enumerate} |
168 |
\item In $(R)$ the formulas of $\Sigma', \Delta'$ are called \textit{principal}, those of $\Sigma_i, \Delta_i$ are called \textit{active}, and those of |
169 |
$ \Gamma, \Pi$ are called \textit{context formulas}. |
170 |
\item Each rule $(R)$ comes with a list $a_1$, \dots, $a_k$ of eigenvariables such that each $a_j$ appears in exactly one $\Sigma_i, \Delta_i$ (so in some active formulas of exactly one premise) and does not appear in $\Sigma', \Delta'$ or $ \Gamma, \Pi$. |
171 |
\item A system $\mathcal{S}$ of rules must be closed under substitutions of free variables by terms (where these substitutions do not contain the eigenvariables $a_j$ in their domain or codomain). |
172 |
\end{enumerate} |
173 |
|
174 |
%The distinction between modal and nonmodal formulae in $(R)$ induces condition 1 |
175 |
Conditions 2 and 3 are standard requirements for nonlogical rules, independently of the logical setting, cf.\ \cite{Beckmann11}. Condition 2 reflects the intuitive idea that, in our nonlogical rules, we often need a notion of \textit{bound} variables in the active formulas (typically for induction rules), for which we rely on eigenvariables. Condition 3 is needed for our proof system to admit elimination of cuts on quantified formulas. |
176 |
|
177 |
|
178 |
\subsection{Free-cut free normal form of proofs} |
179 |
\todo{State theorem, with references (Takeuti, Cook-Nguyen) and present the important corollaries for this work.} |
180 |
|
181 |
Since our nonlogical rules may have many principal formulae on which cuts may be anchored, we need a slightly more general notion of principality. |
182 |
\begin{definition}\label{def:anchoredcut} |
183 |
We define the notions of \textit{hereditarily principal formula} and \textit{anchored cut} in a $\system$-proof, for a system $\system$, by mutual induction as follows: |
184 |
\begin{itemize} |
185 |
\item A formula $A$ in a sequent $\Gamma \seqar \Delta$ is \textit{hereditarily principal} for a rule instance (S) if either (i) the sequent is in the conclusion of (S) and $A$ is principal in it, or |
186 |
(ii) the sequent is in the conclusion of an anchored cut, the direct ancestor of $A$ in the corresponding premise is hereditarily principal for the rule instance (S), and the rule (S) is nonlogical. |
187 |
\item A cut-step is an \textit{anchored cut} if the two occurrences of its cut-formula $A$ in each premise are hereditarily principal for nonlogical steps, or one is hereditarily principal for a nonlogical step and the other one is principal for a logical step. |
188 |
\end{itemize} |
189 |
A cut which is not anchored will also be called a \textit{free-cut}. |
190 |
\end{definition} |
191 |
As a consequence of this definition, an anchored cut on a formula $A$ has the following properties: |
192 |
\begin{itemize} |
193 |
\item At least one of the two premises of the cut has above it a sub-branch of the proof which starts (top-down) with a nonlogical step (R) with $A$ as one of its principal formulas, and then a sequence of anchored cuts in which $A$ is part of the context. |
194 |
\item The other premise is either of the same form or is a logical step with principal formula $A$. |
195 |
\end{itemize} |
196 |
|
197 |
Now we have (see \cite{Takeuti87}): |
198 |
\begin{theorem} |
199 |
[Free-cut elimination] |
200 |
\label{thm:free-cut-elim} |
201 |
Given a system $\mathcal{S}$, any $\mathcal{S}$-proof $\pi$ can be transformed into a $\system$-proof $\pi'$ with same end sequent and without any free-cut. |
202 |
\end{theorem} |
203 |
\todo{state as a corollary a suitable subformula property.} |