Révision 176 CSL17/soundness.tex
soundness.tex (revision 176) | ||
---|---|---|
30 | 30 |
% If $A$ is a $\Pi_{i}$ formula then: |
31 | 31 |
\[ |
32 | 32 |
\begin{array}{rcl} |
33 |
\charfn{}{s\leq t} (l, \vec u ; \vec x, w) & \dfn & \leqfn(;s,t) \\ |
|
33 |
\charfn{}{s\leq t} (l, \vec u ; \vec x, w) & \dfn & \leqfn(l;s,t) \\
|
|
34 | 34 |
\smallskip |
35 |
\charfn{}{s=t} (l, \vec u ; \vec x, w) & \dfn & \eq(;s,t) \\ |
|
35 |
\charfn{}{s=t} (l, \vec u ; \vec x, w) & \dfn & \eq(l;s,t) \\
|
|
36 | 36 |
\smallskip |
37 | 37 |
\charfn{}{\neg A} (l, \vec u ; \vec x, w) & \dfn & \neg (;\charfn{}{A}(l , \vec u ; \vec x)) \\ |
38 | 38 |
\smallskip |
... | ... | |
45 | 45 |
0 & \text{otherwise} |
46 | 46 |
\end{cases} \\ |
47 | 47 |
\smallskip |
48 |
\charfn{\vec u; \vec x}{\forall x^\safe . A(x)} (l, \vec u ;\vec x , w) & \dfn &
|
|
48 |
\charfn{}{\forall x^\safe . A(x)} (l, \vec u ;\vec x , w) & \dfn & |
|
49 | 49 |
\begin{cases} |
50 | 50 |
0 & \exists x^\sigma. \charfn{}{ A(x)} (l, \vec u; \vec x , x) = 0 \\ |
51 | 51 |
1 & \text{otherwise} |
... | ... | |
55 | 55 |
\end{definition} |
56 | 56 |
|
57 | 57 |
|
58 |
\begin{proposition} |
|
59 |
$\charfn{}{A} (l, \vec u ; \vec x)$ is the characteristic function of $A (\vec u \mode l ; \vec x \mode l)$. |
|
60 |
\end{proposition} |
|
61 |
|
|
58 | 62 |
\begin{definition} |
59 | 63 |
[Length bounded witness function] |
60 | 64 |
We now define $\Wit{\vec u ; \vec x}{A} (l , \vec u ; \vec x)$ for a $\Sigma_{i+1}$-formula $A$ with free variables amongst $\vec u; \vec x$. |
Formats disponibles : Unified diff