Révision 176 CSL17/soundness.tex

soundness.tex (revision 176)
30 30
%	If $A$ is a $\Pi_{i}$ formula then:
31 31
	\[
32 32
	\begin{array}{rcl}
33
	\charfn{}{s\leq t} (l, \vec u ; \vec x, w) & \dfn & \leqfn(;s,t) \\
33
	\charfn{}{s\leq t} (l, \vec u ; \vec x, w) & \dfn & \leqfn(l;s,t) \\
34 34
	\smallskip
35
	\charfn{}{s=t} (l, \vec u ; \vec x, w) & \dfn & \eq(;s,t) \\
35
	\charfn{}{s=t} (l, \vec u ; \vec x, w) & \dfn & \eq(l;s,t) \\
36 36
	\smallskip
37 37
	\charfn{}{\neg A} (l, \vec u ; \vec x, w) & \dfn & \neg (;\charfn{}{A}(l , \vec u ; \vec x)) \\
38 38
	\smallskip
......
45 45
	0 & \text{otherwise} 
46 46
	\end{cases} \\
47 47
	\smallskip
48
	\charfn{\vec u; \vec x}{\forall x^\safe . A(x)} (l, \vec u ;\vec x , w) & \dfn & 
48
	\charfn{}{\forall x^\safe . A(x)} (l, \vec u ;\vec x , w) & \dfn & 
49 49
	\begin{cases}
50 50
	0 & \exists x^\sigma. \charfn{}{ A(x)} (l, \vec u; \vec x , x) = 0 \\
51 51
	1 & \text{otherwise}
......
55 55
\end{definition}
56 56

  
57 57

  
58
\begin{proposition}
59
	$\charfn{}{A} (l, \vec u ; \vec x)$ is the characteristic function of $A (\vec u \mode l ; \vec x \mode l)$.
60
\end{proposition}
61

  
58 62
\begin{definition}
59 63
	[Length bounded witness function]
60 64
	We now define $\Wit{\vec u ; \vec x}{A} (l , \vec u ; \vec x)$ for a $\Sigma_{i+1}$-formula $A$ with free variables amongst $\vec u; \vec x$.

Formats disponibles : Unified diff