Révision 176 CSL17/arithmetic.tex

arithmetic.tex (revision 176)
8 8
\forall x^\safe . \safe (\succ{} x) \\
9 9
\forall x^\safe . 0 \neq \succ{} (x) \\
10 10
\forall x^\safe , y^\safe . (\succ{} x = \succ{} y \cimp x = y) \\
11
\forall x^\safe . (x = 0 \cor \exists y^\safe.\  x = \succ{} y   )
11
\forall x^\safe . (x = 0 \cor \exists y^\safe.\  x = \succ{} y   )\\
12
\forall x^\safe, y^\safe . \safe(x+y)\\
13
\forall u^\normal, x^\safe . \safe(u\times x) \\
14
\forall u^\normal , v^\normal . \safe (u \smsh v)
12 15
\end{array}
13 16
\]
14 17
\anupam{in fact, we use essentially the same language, so just take Buss' Basic axioms after proper typing. Should also add the symbol $\hlf{\cdot}$ for binary predecessor then we have the full language of bounded arithmetic.}
......
19 22
[Derived functions and notations]
20 23
We write $1,2,3,\dots$ for the terms $\succ{} 0, \succ{} \succ{} 0, \succ{} \succ{} \succ{} 0 \dots$, and frequently omit the $\times$ symbol.
21 24
We define the functions $\succ 0 x , \succ 1 x$ as $2 x$ and $2x +1$ respectively.
25

  
26
Need $bit$, $\beta$ , $\pair{}{}{}$.
22 27
\end{definition}
23 28

  
24 29
(Here use a variation of S12 with sharply bounded quantifiers and safe quantifiers)
......
30 35

  
31 36
\begin{definition}
32 37
[Quantifier hierarchy]
33
We define:
34
\begin{itemize}
35
	\item $\Sigma^\safe_0 = \Pi^\safe_0 $ = sharply bounded formulae. 
36
	\item (Increase with predicative quantifiers)
37
\end{itemize}	
38
$\Sigma^\safe_0 = \Pi^\safe_0 $ is the set of formulae whose only quantifiers are sharply bounded.
39
We define $\Sigma^\safe_{i+1}$ as the closure of $\Pi^\safe_i $ under $\cor, \cand $, safe existentials and sharply bounded quantifiers.
40
We define $\Pi^\safe_{i+1}$ as the closure of $\Sigma^\safe_i $ under $\cor, \cand $, safe universals and sharply bounded quantifiers.
38 41
\end{definition}
39 42

  
40 43

  

Formats disponibles : Unified diff