Révision 176

CSL17/arithmetic.tex (revision 176)
8 8
\forall x^\safe . \safe (\succ{} x) \\
9 9
\forall x^\safe . 0 \neq \succ{} (x) \\
10 10
\forall x^\safe , y^\safe . (\succ{} x = \succ{} y \cimp x = y) \\
11
\forall x^\safe . (x = 0 \cor \exists y^\safe.\  x = \succ{} y   )
11
\forall x^\safe . (x = 0 \cor \exists y^\safe.\  x = \succ{} y   )\\
12
\forall x^\safe, y^\safe . \safe(x+y)\\
13
\forall u^\normal, x^\safe . \safe(u\times x) \\
14
\forall u^\normal , v^\normal . \safe (u \smsh v)
12 15
\end{array}
13 16
\]
14 17
\anupam{in fact, we use essentially the same language, so just take Buss' Basic axioms after proper typing. Should also add the symbol $\hlf{\cdot}$ for binary predecessor then we have the full language of bounded arithmetic.}
......
19 22
[Derived functions and notations]
20 23
We write $1,2,3,\dots$ for the terms $\succ{} 0, \succ{} \succ{} 0, \succ{} \succ{} \succ{} 0 \dots$, and frequently omit the $\times$ symbol.
21 24
We define the functions $\succ 0 x , \succ 1 x$ as $2 x$ and $2x +1$ respectively.
25

  
26
Need $bit$, $\beta$ , $\pair{}{}{}$.
22 27
\end{definition}
23 28

  
24 29
(Here use a variation of S12 with sharply bounded quantifiers and safe quantifiers)
......
30 35

  
31 36
\begin{definition}
32 37
[Quantifier hierarchy]
33
We define:
34
\begin{itemize}
35
	\item $\Sigma^\safe_0 = \Pi^\safe_0 $ = sharply bounded formulae. 
36
	\item (Increase with predicative quantifiers)
37
\end{itemize}	
38
$\Sigma^\safe_0 = \Pi^\safe_0 $ is the set of formulae whose only quantifiers are sharply bounded.
39
We define $\Sigma^\safe_{i+1}$ as the closure of $\Pi^\safe_i $ under $\cor, \cand $, safe existentials and sharply bounded quantifiers.
40
We define $\Pi^\safe_{i+1}$ as the closure of $\Sigma^\safe_i $ under $\cor, \cand $, safe universals and sharply bounded quantifiers.
38 41
\end{definition}
39 42

  
40 43

  
CSL17/soundness.tex (revision 176)
30 30
%	If $A$ is a $\Pi_{i}$ formula then:
31 31
	\[
32 32
	\begin{array}{rcl}
33
	\charfn{}{s\leq t} (l, \vec u ; \vec x, w) & \dfn & \leqfn(;s,t) \\
33
	\charfn{}{s\leq t} (l, \vec u ; \vec x, w) & \dfn & \leqfn(l;s,t) \\
34 34
	\smallskip
35
	\charfn{}{s=t} (l, \vec u ; \vec x, w) & \dfn & \eq(;s,t) \\
35
	\charfn{}{s=t} (l, \vec u ; \vec x, w) & \dfn & \eq(l;s,t) \\
36 36
	\smallskip
37 37
	\charfn{}{\neg A} (l, \vec u ; \vec x, w) & \dfn & \neg (;\charfn{}{A}(l , \vec u ; \vec x)) \\
38 38
	\smallskip
......
45 45
	0 & \text{otherwise} 
46 46
	\end{cases} \\
47 47
	\smallskip
48
	\charfn{\vec u; \vec x}{\forall x^\safe . A(x)} (l, \vec u ;\vec x , w) & \dfn & 
48
	\charfn{}{\forall x^\safe . A(x)} (l, \vec u ;\vec x , w) & \dfn & 
49 49
	\begin{cases}
50 50
	0 & \exists x^\sigma. \charfn{}{ A(x)} (l, \vec u; \vec x , x) = 0 \\
51 51
	1 & \text{otherwise}
......
55 55
\end{definition}
56 56

  
57 57

  
58
\begin{proposition}
59
	$\charfn{}{A} (l, \vec u ; \vec x)$ is the characteristic function of $A (\vec u \mode l ; \vec x \mode l)$.
60
\end{proposition}
61

  
58 62
\begin{definition}
59 63
	[Length bounded witness function]
60 64
	We now define $\Wit{\vec u ; \vec x}{A} (l , \vec u ; \vec x)$ for a $\Sigma_{i+1}$-formula $A$ with free variables amongst $\vec u; \vec x$.

Formats disponibles : Unified diff