Révision 174 CSL17/arithmetic.tex
arithmetic.tex (revision 174) | ||
---|---|---|
86 | 86 |
\subsection{A sequent calculus presentation} |
87 | 87 |
\todo{Write out usual first-order sequent calculus} |
88 | 88 |
|
89 |
\begin{figure} |
|
90 |
\[ |
|
91 |
\small |
|
92 |
\begin{array}{l} |
|
93 |
\begin{array}{cccc} |
|
94 |
%\vlinf{\lefrul{\bot}}{}{p, \lnot{p} \seqar }{} |
|
95 |
%& \vlinf{\id}{}{p \seqar p}{} |
|
96 |
%& \vlinf{\rigrul{\bot}}{}{\seqar p, \lnot{p}}{} |
|
97 |
%& \vliinf{\cut}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta, A }{\Sigma, A \seqar \Pi} |
|
98 |
\vlinf{id}{}{p \seqar p}{} |
|
99 |
& \vliinf{cut}{}{\Gamma \seqar \Delta }{ \Gamma \seqar \Delta, A }{\Gamma, A \seqar \Delta} |
|
100 |
&& |
|
101 |
\\ |
|
102 |
\noalign{\bigskip} |
|
103 |
%\noalign{\bigskip} |
|
104 |
\vliinf{\lefrul{\cor}}{}{\Gamma, A \cor B \seqar \Delta}{\Gamma , A \seqar \Delta}{\Gamma, B \seqar \Delta} |
|
105 |
& |
|
106 |
\vlinf{\lefrul{\cand}}{}{\Gamma, A\cand B \seqar \Delta}{\Gamma, A , B \seqar \Delta} |
|
107 |
& |
|
108 |
%\vlinf{\lefrul{\laand}}{}{\Gamma, A\laand B \seqar \Delta}{\Gamma, B \seqar \Delta} |
|
109 |
%\quad |
|
110 |
\vlinf{\rigrul{\cor}}{}{\Gamma \seqar \Delta, A \cor B}{\Gamma \seqar \Delta, A, B} |
|
111 |
& |
|
112 |
%\vlinf{\rigrul{\laor}}{}{\Gamma \seqar \Delta, A\laor B}{\Gamma \seqar \Delta, B} |
|
113 |
%\quad |
|
114 |
\vliinf{\rigrul{\cand}}{}{\Gamma \seqar \Delta, A \cand B }{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, B} |
|
115 |
\\ |
|
116 |
\noalign{\bigskip} |
|
117 |
\vliinf{\lefrul{\cimp}}{}{\Gamma, A \cimp B \seqar \Delta}{\Gamma \seqar A, \Delta}{\Gamma, B \seqar \Delta} |
|
118 |
& |
|
119 |
\vlinf{\lefrul{\neg}}{}{\Gamma, \neg A \seqar \Delta}{\Gamma \seqar A, \Delta} |
|
120 |
& |
|
121 |
|
|
122 |
\vlinf{\rigrul{\cimp}}{}{\Gamma \seqar \Delta, A \cimp B}{\Gamma, A \seqar \Delta, B} |
|
123 |
& |
|
124 |
|
|
125 |
\vlinf{\lefrul{\neg}}{}{\Gamma, \seqar \neg A, \Delta}{\Gamma, A \seqar \Delta} |
|
126 |
\\ |
|
127 |
|
|
128 |
\noalign{\bigskip} |
|
129 |
%\text{Structural:} & & & \\ |
|
130 |
%\noalign{\bigskip} |
|
131 |
|
|
132 |
\vlinf{\lefrul{\wk}}{}{\Gamma, A \seqar \Delta}{\Gamma \seqar \Delta} |
|
133 |
& |
|
134 |
\vlinf{\lefrul{\cntr}}{}{\Gamma, A \seqar \Delta}{\Gamma, A, A \seqar \Delta} |
|
135 |
& |
|
136 |
\vlinf{\rigrul{\wk}}{}{\Gamma \seqar \Delta, A }{\Gamma \seqar \Delta} |
|
137 |
& |
|
138 |
\vlinf{\rigrul{\cntr}}{}{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, A, A} |
|
139 |
\\ |
|
140 |
\noalign{\bigskip} |
|
141 |
\vlinf{\lefrul{\exists}}{}{\Gamma, \exists x . A(x) \seqar \Delta}{\Gamma, A(a) \seqar \Delta} |
|
142 |
& |
|
143 |
\vlinf{\lefrul{\forall}}{}{\Gamma, \forall x. A(x) \seqar \Delta}{\Gamma, A(t) \seqar \Delta} |
|
144 |
& |
|
145 |
\vlinf{\rigrul{\exists}}{}{\Gamma \seqar \Delta, \exists x . A(x)}{ \Gamma \seqar \Delta, A(t)} |
|
146 |
& |
|
147 |
\vlinf{\rigrul{\forall}}{}{\Gamma \seqar \Delta, \forall x . A(x)}{ \Gamma \seqar \Delta, A(a) } \\ |
|
148 |
%\noalign{\bigskip} |
|
149 |
% \vliinf{mix}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta}{\Sigma \seqar \Pi} &&& |
|
150 |
\end{array} |
|
151 |
\end{array} |
|
152 |
\] |
|
153 |
\caption{Sequent calculus rules}\label{fig:sequentcalculus} |
|
154 |
\end{figure} |
|
155 |
We denote sequence as $\Gamma \seqar \Delta$ where $\Gamma$, $\Delta$ are multi sets of formulas. The sequent calculus rules are displayed on Fig. \ref{fig:sequentcalculus}, where $p$ is atomic, $i \in \{ 1,2 \}$, $t$ is a term and the eigenvariable $a$ does not occur free in $\Gamma$ or $\Delta$. |
|
156 |
|
|
157 |
We consider \emph{systems} of `nonlogical' rules extending this sequent calculus, which we write as follows, |
|
158 |
\[ |
|
159 |
\begin{array}{cc} |
|
160 |
\vlinf{(R)}{}{ \Gamma , \Sigma' \seqar \Delta' , \Pi }{ \{\Gamma , \Sigma_i \seqar \Delta_i , \Pi \}_{i \in I} } |
|
161 |
\end{array} |
|
162 |
\] |
|
163 |
where, in each rule $(R)$, $I$ is a finite possibly empty set (indicating the number of premises) and we assume the following conditions and terminology: |
|
164 |
\begin{enumerate} |
|
165 |
\item In $(R)$ the formulas of $\Sigma', \Delta'$ are called \textit{principal}, those of $\Sigma_i, \Delta_i$ are called \textit{active}, and those of |
|
166 |
$ \Gamma, \Pi$ are called \textit{context formulas}. |
|
167 |
\item Each rule $(R)$ comes with a list $a_1$, \dots, $a_k$ of eigenvariables such that each $a_j$ appears in exactly one $\Sigma_i, \Delta_i$ (so in some active formulas of exactly one premise) and does not appear in $\Sigma', \Delta'$ or $ \Gamma, \Pi$. |
|
168 |
\item A system $\mathcal{S}$ of rules must be closed under substitutions of free variables by terms (where these substitutions do not contain the eigenvariables $a_j$ in their domain or codomain). |
|
169 |
\end{enumerate} |
|
170 |
|
|
171 |
%The distinction between modal and nonmodal formulae in $(R)$ induces condition 1 |
|
172 |
Conditions 2 and 3 are standard requirements for nonlogical rules, independently of the logical setting, cf.\ \cite{Beckmann11}. Condition 2 reflects the intuitive idea that, in our nonlogical rules, we often need a notion of \textit{bound} variables in the active formulas (typically for induction rules), for which we rely on eigenvariables. Condition 3 is needed for our proof system to admit elimination of cuts on quantified formulas. |
|
173 |
|
|
174 |
|
|
89 | 175 |
\subsection{Free-cut free normal form of proofs} |
90 |
\todo{State theorem, with references (Takeuti, Cook-Nguyen) and present the important corollaries for this work.} |
|
176 |
\todo{State theorem, with references (Takeuti, Cook-Nguyen) and present the important corollaries for this work.} |
|
177 |
Since our nonlogical rules may have many principal formulae on which cuts may be anchored, we need a slightly more general notion of principality. |
|
178 |
\begin{definition}\label{def:anchoredcut} |
|
179 |
We define the notions of \textit{hereditarily principal formula} and \textit{anchored cut} in a $\system$-proof, for a system $\system$, by mutual induction as follows: |
|
180 |
\begin{itemize} |
|
181 |
\item A formula $A$ in a sequent $\Gamma \seqar \Delta$ is \textit{hereditarily principal} for a rule instance (S) if either (i) the sequent is in the conclusion of (S) and $A$ is principal in it, or |
|
182 |
(ii) the sequent is in the conclusion of an anchored cut, the direct ancestor of $A$ in the corresponding premise is hereditarily principal for the rule instance (S), and the rule (S) is nonlogical. |
|
183 |
\item A cut-step is an \textit{anchored cut} if the two occurrences of its cut-formula $A$ in each premise are hereditarily principal for nonlogical steps, or one is hereditarily principal for a nonlogical step and the other one is principal for a logical step. |
|
184 |
\end{itemize} |
|
185 |
A cut which is not anchored will also be called a \textit{free-cut}. |
|
186 |
\end{definition} |
|
187 |
As a consequence of this definition, an anchored cut on a formula $A$ has the following properties: |
|
188 |
\begin{itemize} |
|
189 |
\item At least one of the two premises of the cut has above it a sub-branch of the proof which starts (top-down) with a nonlogical step (R) with $A$ as one of its principal formulas, and then a sequence of anchored cuts in which $A$ is part of the context. |
|
190 |
\item The other premise is either of the same form or is a logical step with principal formula $A$. |
|
191 |
\end{itemize} |
|
192 |
|
|
193 |
Now we have (see \cite{Takeuti87}): |
|
194 |
\begin{theorem} |
|
195 |
[Free-cut elimination] |
|
196 |
\label{thm:free-cut-elim} |
|
197 |
Given a system $\mathcal{S}$, any $\mathcal{S}$-proof $\pi$ can be transformed into a $\system$-proof $\pi'$ with same end sequent and without any free-cut. |
|
198 |
\end{theorem} |
Formats disponibles : Unified diff