Statistiques
| Révision :

root / CSL17 / completeness.tex @ 174

Historique | Voir | Annoter | Télécharger (6,07 ko)

1 166 adas
\section{Completeness}
2 166 adas
3 166 adas
The main result of this section is the following:
4 166 adas
5 166 adas
\begin{theorem}
6 166 adas
	\label{thm:completeness}
7 166 adas
	For every $\mubci{i-1}$ program $f(\vec u ; \vec x)$ (which is in $\fphi i$), there is a $\Sigma_i$ formula $A_f(\vec u, \vec x)$ such that $\arith^i$ proves $\forall \vec u \in \normal . \forall \vec x \in \safe. \exists ! y \in \safe . A_f(\vec u , \vec x , y )$ and $\Nat \models \forall \vec u , \vec x. A(\vec u , \vec x , f(\vec u ; \vec x))$.
8 168 adas
\end{theorem}
9 168 adas
10 168 adas
The rest of this section is devoted to a proof of this theorem.
11 168 adas
We proceed by structural induction on a $\mubc{i-1} $ program, dealing with each case in the proceeding paragraphs.
12 168 adas
13 168 adas
\paragraph*{Predicative minimisation}
14 168 adas
Suppose $f(\vec u ; \vec x)$ is defined as $\mu x^{+1} . g(\vec u ; \vec x , x) =_2 0$.
15 168 adas
By definition $g$ is in $\mubci{i-2}$, and so by the inductive hypothesis there is a $\Sigma_{i-1}$ formula $A_g (\vec u , \vec x , x , y)$ computing the graph of $g$ such that,
16 168 adas
\[
17 168 adas
\arith^i \proves \forall \vec u^\normal . \forall \vec x^\safe , x^\safe . \exists ! y^\safe . A_g(\vec u , \vec x , x , y)
18 168 adas
\]
19 168 adas
Let us define $A_f(\vec u ; \vec x , z)$ as:
20 168 adas
\[
21 168 adas
\begin{array}{rl}
22 168 adas
&\left(
23 168 adas
z=0 \  \cand \ \forall x^\safe , y^\safe . (A_g (\vec u , \vec x , x, y) \cimp y=_2 1)
24 168 adas
\right) \\
25 168 adas
\cor & \left(
26 168 adas
\begin{array}{ll}
27 168 adas
z\neq 0
28 168 adas
& \cand\   \forall y^\safe . (A_g (\vec u , \vec x , p z , y) \cimp y=_2 0 ) \\
29 168 adas
& \cand\ \forall x^\safe < p z . \forall y^\safe . (A_g (\vec u , \vec x , x , y) \cimp y=_2 1)
30 168 adas
\end{array}
31 168 adas
\right)
32 168 adas
\end{array}
33 168 adas
\]
34 168 adas
Notice that $A_f$ is $\Pi_{i-1}$, since $A_g$ is $\Sigma_{i-1}$ and occurs only in negative context above, with additional safe universal quantifiers occurring in positive context.
35 168 adas
In particular this means $A_f$ is $\Sigma_i$.
36 168 adas
37 168 adas
Now, to prove totality of $A_f$, we rely on $\Sigma^\safe_{i-1}$-minimisation, which is a consequence of $\cpind{\Sigma^\safe_i}$:
38 168 adas
39 168 adas
\begin{lemma}
40 168 adas
[Minimisation]
41 168 adas
$\arith^i \proves \cmin{\Sigma^\safe_{i-1}}$.
42 168 adas
\end{lemma}
43 174 pbaillot
% see Thm 20 p. 58 in Buss' book.
44 168 adas
\begin{proof}
45 168 adas
\todo{}
46 168 adas
\end{proof}
47 168 adas
48 168 adas
Now, working in $\arith^i$, let $\vec u \in \normal , \vec x \in \safe$ and let us prove:
49 168 adas
\[
50 168 adas
\exists !z^\safe  . A_f(\vec u ; \vec x , z)
51 168 adas
\]
52 168 adas
Suppose that $\exists x^\safe , y^\safe .  (A_g (\vec u ,\vec x , x , y) \cand y=_2 0)$.
53 170 pbaillot
We can apply minimisation due to the lemma above to find the least $x\in \safe$ such that $\exists y^\safe .  (A_g (\vec u ,\vec x , x , y) \cand y=_2 0)$, and we set $z = \succ 1 x$. So $x= p z$.
54 170 pbaillot
%\todo{verify $z\neq 0$ disjunct.}
55 170 pbaillot
Then $z \neq 0$ holds. Moreover we had  $\exists ! y^\safe . A_g(\vec u , \vec x , x , y)$. So we deduce that
56 170 pbaillot
 $\forall y^\safe . (A_g (\vec u , \vec x , p z , y) \cimp y=_2 0 ) $. Finally, as $p z$ is the least element such that
57 170 pbaillot
  $\exists y^\safe .  (A_g (\vec u ,\vec x , p z , y) \cand y=_2 0)$, we deduce
58 170 pbaillot
 $\ \forall x^\safe < p z . \forall y^\safe . (A_g (\vec u , \vec x , x , y) \cimp y=_2 1) $. We conclude that the second member of the disjunction
59 170 pbaillot
 $A_f(\vec u ; \vec x , z)$ is proven.
60 168 adas
61 170 pbaillot
 Otherwise, we have that $\forall x^\safe , y^\safe . (A_g (\vec u , \vec x , x, y) \cimp y=_2 1)$, so we can set $z=0$ and the first member of the disjunction $A_f(\vec u ; \vec x , z)$ is proven.
62 168 adas
63 170 pbaillot
So we have proven $\exists z^\safe  . A_f(\vec u ; \vec x , z)$, and unicity can be easily verified.
64 168 adas
65 168 adas
\paragraph*{Predicative recursion on notation}
66 171 adas
67 171 adas
\anupam{Assume access to the following predicates (makes completeness easier, soundness will be okay):
68 171 adas
	\begin{itemize}
69 171 adas
	%	\item $\pair x y z $ . ``$z$ is the sequence that appends $y$ to the sequence $x$''
70 171 adas
		\item $\pair x y z$. ``$z$ is the sequence that prepends $x$ to the sequence $y$''
71 171 adas
		\item $\beta (i; x ,y)$. ``The $i$th element of the sequence $x$ is $y$.''
72 171 adas
	\end{itemize}
73 171 adas
	}
74 171 adas
75 168 adas
Now suppose that $f$ is defined by PRN:
76 168 adas
\[
77 168 adas
\begin{array}{rcl}
78 168 adas
f(0 , \vec u ; \vec x) & \dfn & g(\vec u ; \vec x) \\
79 168 adas
f(\succ i u, \vec u ; \vec x) & \dfn & h_i( u , \vec u ; \vec x , f(u , \vec u ; \vec x))
80 168 adas
\end{array}
81 168 adas
\]
82 168 adas
83 168 adas
\anupam{using $\beta(i,x,y)$ predicate for sequences: ``$i$th element of $x$ is $y$''. Provably total in $\arith^1$.}
84 168 adas
85 168 adas
Suppose we have $\Sigma^\safe_i$ formulae $A_g (\vec u ; \vec x,y)$ and $A_{h_i} (u , \vec u ; \vec x , y , z)$ computing the graphs of $g$ and $h_i$ respectively, provably total in $\arith^i$.
86 168 adas
We define $A_f (u ,\vec u ; \vec x , y)$ as,
87 168 adas
\[
88 168 adas
\exists w^\safe . \left(
89 168 adas
\begin{array}{ll}
90 168 adas
&
91 168 adas
%Seq(z) \cand
92 168 adas
\exists y_0 . ( A_g (\vec u , \vec x , y_0) \cand \beta(0, w , y_0) ) \cand \beta(|u|, w,y ) \\
93 174 pbaillot
\cand & \forall k < |u| . \exists y_k , y_{k+1} . ( \beta (k, w, y_k) \cand \beta (k+1 ,w, y_{k+1})  \cand A_{h_i} (u , \vec u ; \vec x , y_k , y_{k+1}) )
94 168 adas
\end{array}
95 168 adas
\right)
96 168 adas
\]
97 168 adas
which is $\Sigma^\safe_i$ by inspection, and indeed defines the graph of $f$.
98 168 adas
99 168 adas
To show totality, let $\vec u \in \normal, \vec x \in \safe$ and proceed by induction on $u \in \normal$.
100 168 adas
The base case, when $u=0$, is immediate from the totality of $A_g$, so for the inductive case we need to show:
101 168 adas
\[
102 168 adas
\exists y^\safe . A_f (u , \vec u ; \vec x , y)
103 168 adas
\quad \seqar \quad
104 168 adas
\exists z^\safe . A_f (s_i u, \vec u ; \vec x , y)
105 168 adas
\]
106 168 adas
107 168 adas
\anupam{here need to `add' element to the computation sequence. Need to do this earlier in the paper.}
108 168 adas
109 168 adas
\anupam{for inductive cases, need $u\neq 0$ for $\succ 0$ case.}
110 168 adas
111 168 adas
\paragraph*{Safe composition}
112 168 adas
Now suppose that $f$ is defined by safe composition:
113 168 adas
\[
114 168 adas
f(\vec u ; \vec x) \quad \dfn \quad g( \vec h(\vec u;) ; \vec h' (\vec u ; \vec x) )
115 168 adas
\]
116 168 adas
117 168 adas
By the inductive hypothesis, let us suppose that we have $\Sigma^\safe_i $ definitions $A_g , A_{h_i} , A_{h_j'} $ of the graphs of $g , h_i , h_j'$ respectively, which are provably total etc.
118 168 adas
In particular, by Raising, we have that $\forall \vec u^\normal . \exists v^\normal . A_{h_i} (\vec u , v)$.
119 168 adas
120 168 adas
We define $A_f (\vec u , \vec x , z)$ defining the graph of $f$ as follows:
121 168 adas
\[
122 168 adas
\exists \vec v^\normal . \exists \vec y^\safe .
123 168 adas
\left(
124 168 adas
\bigwedge\limits_i A_{h_i} (\vec u , v_i)
125 168 adas
\wedge
126 168 adas
\bigwedge\limits_j A_{h_j'} (\vec u ; \vec x , y_j)
127 168 adas
\wedge
128 168 adas
A_g ( \vec v , \vec y , z )
129 168 adas
\right)
130 168 adas
\]
131 168 adas
The provable totality of $A_f$ follows from simple first-order reasoning, mostly cuts and basic quantifier manipulations.
132 168 adas
133 168 adas
\todo{elaborate}
134 168 adas
135 168 adas
\paragraph*{Other cases}
136 168 adas
\todo{}
137 168 adas
138 168 adas
139 168 adas
140 168 adas
141 168 adas
142 168 adas
143 168 adas
144 168 adas
145 168 adas
146 168 adas
147 168 adas
148 168 adas
149 168 adas
150 168 adas
151 168 adas
152 168 adas
153 168 adas
154 168 adas
155 168 adas
156 168 adas
157 168 adas
158 168 adas
159 168 adas