root / CSL17 / arithmetic.tex @ 174
Historique | Voir | Annoter | Télécharger (9,42 ko)
1 | 166 | adas | \section{An arithmetic for the polynomial hierarchy} |
---|---|---|---|
2 | 172 | adas | Our base language is $\{ 0, \succ{} , + , \times, \smsh , |\cdot| , \leq \}$. |
3 | 156 | adas | |
4 | 171 | adas | The $\basic$ axioms are as follows: |
5 | 171 | adas | \[ |
6 | 171 | adas | \begin{array}{l} |
7 | 171 | adas | \safe (0) \\ |
8 | 172 | adas | \forall x^\safe . \safe (\succ{} x) \\ |
9 | 172 | adas | \forall x^\safe . 0 \neq \succ{} (x) \\ |
10 | 172 | adas | \forall x^\safe , y^\safe . (\succ{} x = \succ{} y \cimp x = y) \\ |
11 | 172 | adas | \forall x^\safe . (x = 0 \cor \exists y^\safe.\ x = \succ{} y ) |
12 | 171 | adas | \end{array} |
13 | 171 | adas | \] |
14 | 172 | adas | \anupam{in fact, we use essentially the same language, so just take Buss' Basic axioms after proper typing. Should also add the symbol $\hlf{\cdot}$ for binary predecessor then we have the full language of bounded arithmetic.} |
15 | 168 | adas | |
16 | 172 | adas | |
17 | 172 | adas | |
18 | 172 | adas | \begin{definition} |
19 | 172 | adas | [Derived functions and notations] |
20 | 172 | adas | We write $1,2,3,\dots$ for the terms $\succ{} 0, \succ{} \succ{} 0, \succ{} \succ{} \succ{} 0 \dots$, and frequently omit the $\times$ symbol. |
21 | 172 | adas | We define the functions $\succ 0 x , \succ 1 x$ as $2 x$ and $2x +1$ respectively. |
22 | 172 | adas | \end{definition} |
23 | 172 | adas | |
24 | 157 | adas | (Here use a variation of S12 with sharply bounded quantifiers and safe quantifiers) |
25 | 157 | adas | |
26 | 157 | adas | Use base theory + sharply bounded quantifiers. |
27 | 157 | adas | |
28 | 157 | adas | |
29 | 168 | adas | |
30 | 168 | adas | |
31 | 157 | adas | \begin{definition} |
32 | 157 | adas | [Quantifier hierarchy] |
33 | 157 | adas | We define: |
34 | 157 | adas | \begin{itemize} |
35 | 157 | adas | \item $\Sigma^\safe_0 = \Pi^\safe_0 $ = sharply bounded formulae. |
36 | 157 | adas | \item (Increase with predicative quantifiers) |
37 | 157 | adas | \end{itemize} |
38 | 157 | adas | \end{definition} |
39 | 157 | adas | |
40 | 168 | adas | |
41 | 168 | adas | \anupam{Collection principles for prenexing? Otherwise need to add closure under sharply bounded quantifiers.} |
42 | 168 | adas | |
43 | 168 | adas | |
44 | 157 | adas | \begin{definition} |
45 | 166 | adas | Define the theory $\arith^i$ consisting of the following axioms: |
46 | 166 | adas | \begin{itemize} |
47 | 166 | adas | \item $\basic$; |
48 | 166 | adas | \item $\cpind{\Sigma^\safe_i } $: |
49 | 166 | adas | \end{itemize} |
50 | 168 | adas | and an inference rule: |
51 | 168 | adas | \[ |
52 | 168 | adas | \dfrac{\forall \vec x^\normal . \exists y^\safe . A }{ \forall \vec x^\normal .\exists y^\normal . A} |
53 | 168 | adas | \] |
54 | 157 | adas | \end{definition} |
55 | 168 | adas | \anupam{In induction,for inductive cases, need $u\neq 0$ for $\succ 0$ case.} |
56 | 157 | adas | |
57 | 157 | adas | \begin{lemma} |
58 | 157 | adas | [Sharply bounded lemma] |
59 | 157 | adas | Let $f_A$ be the characteristic function of a predicate $A(u , \vec u ; \vec x)$. |
60 | 157 | adas | Then the characteristic functions of $\forall u \prefix v . A(u,\vec u ; \vec x)$ and $\exists u \prefix v . A(u , \vec u ; \vec x)$ are in $\bc(f_A)$. |
61 | 157 | adas | \end{lemma} |
62 | 157 | adas | \begin{proof} |
63 | 157 | adas | We give the $\forall$ case, the $\exists$ case being dual. |
64 | 157 | adas | The characteristic function $f(v , \vec u ; \vec x)$ is defined by predicative recursion on $v$ as: |
65 | 157 | adas | \[ |
66 | 157 | adas | \begin{array}{rcl} |
67 | 157 | adas | f(0, \vec u ; \vec x) & \dfn & f_A (0 , \vec u ; \vec x) \\ |
68 | 157 | adas | f(\succ i v , \vec u ; \vec x) & \dfn & \cond ( ; f_A (\succ i v, \vec u ; \vec x) , 0 , f(v , \vec u ; \vec x) ) |
69 | 157 | adas | \end{array} |
70 | 157 | adas | \] |
71 | 157 | adas | \end{proof} |
72 | 157 | adas | |
73 | 157 | adas | Notice that $\prefix$ suffices to encode usual sharply bounded inequalities, |
74 | 168 | adas | since $\forall u \leq |t| . A(u , \vec u ; \vec x) \ciff \forall u \prefix t . A(|u|, \vec u ; \vec x)$. |
75 | 168 | adas | |
76 | 168 | adas | |
77 | 168 | adas | \subsection{Graphs of some basic functions} |
78 | 168 | adas | Todo: $+1$, |
79 | 168 | adas | |
80 | 168 | adas | \subsection{Encoding sequences in the arithmetic} |
81 | 168 | adas | \todo{} |
82 | 168 | adas | |
83 | 168 | adas | \anupam{Assume we have a $\Sigma^\safe_1$ predicate $\beta(i,x,y)$, expressing that the $i$th element of the sequence $x$ is $y$, such that $\arith^1 \proves \forall i^\normal , x^\safe . \exists ! y^\safe . \beta (i,x,y)$.} |
84 | 168 | adas | |
85 | 168 | adas | |
86 | 168 | adas | \subsection{A sequent calculus presentation} |
87 | 168 | adas | \todo{Write out usual first-order sequent calculus} |
88 | 168 | adas | |
89 | 174 | pbaillot | \begin{figure} |
90 | 174 | pbaillot | \[ |
91 | 174 | pbaillot | \small |
92 | 174 | pbaillot | \begin{array}{l} |
93 | 174 | pbaillot | \begin{array}{cccc} |
94 | 174 | pbaillot | %\vlinf{\lefrul{\bot}}{}{p, \lnot{p} \seqar }{} |
95 | 174 | pbaillot | %& \vlinf{\id}{}{p \seqar p}{} |
96 | 174 | pbaillot | %& \vlinf{\rigrul{\bot}}{}{\seqar p, \lnot{p}}{} |
97 | 174 | pbaillot | %& \vliinf{\cut}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta, A }{\Sigma, A \seqar \Pi} |
98 | 174 | pbaillot | \vlinf{id}{}{p \seqar p}{} |
99 | 174 | pbaillot | & \vliinf{cut}{}{\Gamma \seqar \Delta }{ \Gamma \seqar \Delta, A }{\Gamma, A \seqar \Delta} |
100 | 174 | pbaillot | && |
101 | 174 | pbaillot | \\ |
102 | 174 | pbaillot | \noalign{\bigskip} |
103 | 174 | pbaillot | %\noalign{\bigskip} |
104 | 174 | pbaillot | \vliinf{\lefrul{\cor}}{}{\Gamma, A \cor B \seqar \Delta}{\Gamma , A \seqar \Delta}{\Gamma, B \seqar \Delta} |
105 | 174 | pbaillot | & |
106 | 174 | pbaillot | \vlinf{\lefrul{\cand}}{}{\Gamma, A\cand B \seqar \Delta}{\Gamma, A , B \seqar \Delta} |
107 | 174 | pbaillot | & |
108 | 174 | pbaillot | %\vlinf{\lefrul{\laand}}{}{\Gamma, A\laand B \seqar \Delta}{\Gamma, B \seqar \Delta} |
109 | 174 | pbaillot | %\quad |
110 | 174 | pbaillot | \vlinf{\rigrul{\cor}}{}{\Gamma \seqar \Delta, A \cor B}{\Gamma \seqar \Delta, A, B} |
111 | 174 | pbaillot | & |
112 | 174 | pbaillot | %\vlinf{\rigrul{\laor}}{}{\Gamma \seqar \Delta, A\laor B}{\Gamma \seqar \Delta, B} |
113 | 174 | pbaillot | %\quad |
114 | 174 | pbaillot | \vliinf{\rigrul{\cand}}{}{\Gamma \seqar \Delta, A \cand B }{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, B} |
115 | 174 | pbaillot | \\ |
116 | 174 | pbaillot | \noalign{\bigskip} |
117 | 174 | pbaillot | \vliinf{\lefrul{\cimp}}{}{\Gamma, A \cimp B \seqar \Delta}{\Gamma \seqar A, \Delta}{\Gamma, B \seqar \Delta} |
118 | 174 | pbaillot | & |
119 | 174 | pbaillot | \vlinf{\lefrul{\neg}}{}{\Gamma, \neg A \seqar \Delta}{\Gamma \seqar A, \Delta} |
120 | 174 | pbaillot | & |
121 | 174 | pbaillot | |
122 | 174 | pbaillot | \vlinf{\rigrul{\cimp}}{}{\Gamma \seqar \Delta, A \cimp B}{\Gamma, A \seqar \Delta, B} |
123 | 174 | pbaillot | & |
124 | 174 | pbaillot | |
125 | 174 | pbaillot | \vlinf{\lefrul{\neg}}{}{\Gamma, \seqar \neg A, \Delta}{\Gamma, A \seqar \Delta} |
126 | 174 | pbaillot | \\ |
127 | 174 | pbaillot | |
128 | 174 | pbaillot | \noalign{\bigskip} |
129 | 174 | pbaillot | %\text{Structural:} & & & \\ |
130 | 174 | pbaillot | %\noalign{\bigskip} |
131 | 174 | pbaillot | |
132 | 174 | pbaillot | \vlinf{\lefrul{\wk}}{}{\Gamma, A \seqar \Delta}{\Gamma \seqar \Delta} |
133 | 174 | pbaillot | & |
134 | 174 | pbaillot | \vlinf{\lefrul{\cntr}}{}{\Gamma, A \seqar \Delta}{\Gamma, A, A \seqar \Delta} |
135 | 174 | pbaillot | & |
136 | 174 | pbaillot | \vlinf{\rigrul{\wk}}{}{\Gamma \seqar \Delta, A }{\Gamma \seqar \Delta} |
137 | 174 | pbaillot | & |
138 | 174 | pbaillot | \vlinf{\rigrul{\cntr}}{}{\Gamma \seqar \Delta, A}{\Gamma \seqar \Delta, A, A} |
139 | 174 | pbaillot | \\ |
140 | 174 | pbaillot | \noalign{\bigskip} |
141 | 174 | pbaillot | \vlinf{\lefrul{\exists}}{}{\Gamma, \exists x . A(x) \seqar \Delta}{\Gamma, A(a) \seqar \Delta} |
142 | 174 | pbaillot | & |
143 | 174 | pbaillot | \vlinf{\lefrul{\forall}}{}{\Gamma, \forall x. A(x) \seqar \Delta}{\Gamma, A(t) \seqar \Delta} |
144 | 174 | pbaillot | & |
145 | 174 | pbaillot | \vlinf{\rigrul{\exists}}{}{\Gamma \seqar \Delta, \exists x . A(x)}{ \Gamma \seqar \Delta, A(t)} |
146 | 174 | pbaillot | & |
147 | 174 | pbaillot | \vlinf{\rigrul{\forall}}{}{\Gamma \seqar \Delta, \forall x . A(x)}{ \Gamma \seqar \Delta, A(a) } \\ |
148 | 174 | pbaillot | %\noalign{\bigskip} |
149 | 174 | pbaillot | % \vliinf{mix}{}{\Gamma, \Sigma \seqar \Delta , \Pi}{ \Gamma \seqar \Delta}{\Sigma \seqar \Pi} &&& |
150 | 174 | pbaillot | \end{array} |
151 | 174 | pbaillot | \end{array} |
152 | 174 | pbaillot | \] |
153 | 174 | pbaillot | \caption{Sequent calculus rules}\label{fig:sequentcalculus} |
154 | 174 | pbaillot | \end{figure} |
155 | 174 | pbaillot | We denote sequence as $\Gamma \seqar \Delta$ where $\Gamma$, $\Delta$ are multi sets of formulas. The sequent calculus rules are displayed on Fig. \ref{fig:sequentcalculus}, where $p$ is atomic, $i \in \{ 1,2 \}$, $t$ is a term and the eigenvariable $a$ does not occur free in $\Gamma$ or $\Delta$. |
156 | 174 | pbaillot | |
157 | 174 | pbaillot | We consider \emph{systems} of `nonlogical' rules extending this sequent calculus, which we write as follows, |
158 | 174 | pbaillot | \[ |
159 | 174 | pbaillot | \begin{array}{cc} |
160 | 174 | pbaillot | \vlinf{(R)}{}{ \Gamma , \Sigma' \seqar \Delta' , \Pi }{ \{\Gamma , \Sigma_i \seqar \Delta_i , \Pi \}_{i \in I} } |
161 | 174 | pbaillot | \end{array} |
162 | 174 | pbaillot | \] |
163 | 174 | pbaillot | where, in each rule $(R)$, $I$ is a finite possibly empty set (indicating the number of premises) and we assume the following conditions and terminology: |
164 | 174 | pbaillot | \begin{enumerate} |
165 | 174 | pbaillot | \item In $(R)$ the formulas of $\Sigma', \Delta'$ are called \textit{principal}, those of $\Sigma_i, \Delta_i$ are called \textit{active}, and those of |
166 | 174 | pbaillot | $ \Gamma, \Pi$ are called \textit{context formulas}. |
167 | 174 | pbaillot | \item Each rule $(R)$ comes with a list $a_1$, \dots, $a_k$ of eigenvariables such that each $a_j$ appears in exactly one $\Sigma_i, \Delta_i$ (so in some active formulas of exactly one premise) and does not appear in $\Sigma', \Delta'$ or $ \Gamma, \Pi$. |
168 | 174 | pbaillot | \item A system $\mathcal{S}$ of rules must be closed under substitutions of free variables by terms (where these substitutions do not contain the eigenvariables $a_j$ in their domain or codomain). |
169 | 174 | pbaillot | \end{enumerate} |
170 | 174 | pbaillot | |
171 | 174 | pbaillot | %The distinction between modal and nonmodal formulae in $(R)$ induces condition 1 |
172 | 174 | pbaillot | Conditions 2 and 3 are standard requirements for nonlogical rules, independently of the logical setting, cf.\ \cite{Beckmann11}. Condition 2 reflects the intuitive idea that, in our nonlogical rules, we often need a notion of \textit{bound} variables in the active formulas (typically for induction rules), for which we rely on eigenvariables. Condition 3 is needed for our proof system to admit elimination of cuts on quantified formulas. |
173 | 174 | pbaillot | |
174 | 174 | pbaillot | |
175 | 168 | adas | \subsection{Free-cut free normal form of proofs} |
176 | 174 | pbaillot | \todo{State theorem, with references (Takeuti, Cook-Nguyen) and present the important corollaries for this work.} |
177 | 174 | pbaillot | Since our nonlogical rules may have many principal formulae on which cuts may be anchored, we need a slightly more general notion of principality. |
178 | 174 | pbaillot | \begin{definition}\label{def:anchoredcut} |
179 | 174 | pbaillot | We define the notions of \textit{hereditarily principal formula} and \textit{anchored cut} in a $\system$-proof, for a system $\system$, by mutual induction as follows: |
180 | 174 | pbaillot | \begin{itemize} |
181 | 174 | pbaillot | \item A formula $A$ in a sequent $\Gamma \seqar \Delta$ is \textit{hereditarily principal} for a rule instance (S) if either (i) the sequent is in the conclusion of (S) and $A$ is principal in it, or |
182 | 174 | pbaillot | (ii) the sequent is in the conclusion of an anchored cut, the direct ancestor of $A$ in the corresponding premise is hereditarily principal for the rule instance (S), and the rule (S) is nonlogical. |
183 | 174 | pbaillot | \item A cut-step is an \textit{anchored cut} if the two occurrences of its cut-formula $A$ in each premise are hereditarily principal for nonlogical steps, or one is hereditarily principal for a nonlogical step and the other one is principal for a logical step. |
184 | 174 | pbaillot | \end{itemize} |
185 | 174 | pbaillot | A cut which is not anchored will also be called a \textit{free-cut}. |
186 | 174 | pbaillot | \end{definition} |
187 | 174 | pbaillot | As a consequence of this definition, an anchored cut on a formula $A$ has the following properties: |
188 | 174 | pbaillot | \begin{itemize} |
189 | 174 | pbaillot | \item At least one of the two premises of the cut has above it a sub-branch of the proof which starts (top-down) with a nonlogical step (R) with $A$ as one of its principal formulas, and then a sequence of anchored cuts in which $A$ is part of the context. |
190 | 174 | pbaillot | \item The other premise is either of the same form or is a logical step with principal formula $A$. |
191 | 174 | pbaillot | \end{itemize} |
192 | 174 | pbaillot | |
193 | 174 | pbaillot | Now we have (see \cite{Takeuti87}): |
194 | 174 | pbaillot | \begin{theorem} |
195 | 174 | pbaillot | [Free-cut elimination] |
196 | 174 | pbaillot | \label{thm:free-cut-elim} |
197 | 174 | pbaillot | Given a system $\mathcal{S}$, any $\mathcal{S}$-proof $\pi$ can be transformed into a $\system$-proof $\pi'$ with same end sequent and without any free-cut. |
198 | 174 | pbaillot | \end{theorem} |