Révision 173 CSL17/soundness.tex

soundness.tex (revision 173)
36 36
	\smallskip
37 37
	\charfn{}{\neg A} (l, \vec u ; \vec x, w) & \dfn & \neg (;\charfn{}{A}(l , \vec u ; \vec x)) \\
38 38
	\smallskip
39
	\charfn{}{A\cor B} (l, \vec u ; \vec x , w) & \dfn & \cor (; \charfn{}{A} (\vec u ; \vec x , w), \charfn{}{B} (\vec u ;\vec x, w) ) \\
39
	\charfn{}{A\cor B} (l, \vec u ; \vec x , w) & \dfn & \cor (; \charfn{}{A} (l, \vec u ; \vec x , w), \charfn{}{B} (\vec u ;\vec x, w) ) \\
40 40
	\smallskip
41
	\charfn{}{A\cand B} (l, \vec u ; \vec x , w) & \dfn & \cand(; \charfn{}{A} (\vec u ; \vec x , w), \charfn{}{B} (\vec u ;\vec x, w) ) \\
41
	\charfn{}{A\cand B} (l, \vec u ; \vec x , w) & \dfn & \cand(; \charfn{}{A} (l, \vec u ; \vec x , w), \charfn{}{B} (\vec u ;\vec x, w) ) \\
42 42
	\smallskip
43 43
	\charfn{}{\exists x^\safe . A(x)} (l, \vec u ;\vec x,  w) & \dfn & \begin{cases}
44
	1 & \exists x^\safe . \charfn{}{A(x)} (\vec u ;\vec x , x, w) = 1 \\
44
	1 & \exists x^\safe . \charfn{}{A(x)} (l, \vec u ;\vec x , x, w) = 1 \\
45 45
	0 & \text{otherwise} 
46 46
	\end{cases} \\
47 47
	\smallskip
48 48
	\charfn{\vec u; \vec x}{\forall x^\safe . A(x)} (l, \vec u ;\vec x , w) & \dfn & 
49 49
	\begin{cases}
50
	0 & \exists x^\sigma. \charfn{}{ A(x)} (\vec u; \vec x , x) = 0 \\
50
	0 & \exists x^\sigma. \charfn{}{ A(x)} (l, \vec u; \vec x , x) = 0 \\
51 51
	1 & \text{otherwise}
52 52
	\end{cases}
53 53
	\end{array}
54 54
	\]
55
\end{definition}
55
\end{definition}
56

  
57

  
58
\begin{definition}
59
	[Length bounded witness function]
60
	We now define $\Wit{\vec u ; \vec x}{A} (l , \vec u ; \vec x)$ for a $\Sigma_{i+1}$-formula $A$ with free variables amongst $\vec u; \vec x$.
61
	\[
62
	\begin{array}{rcl}
63
	\Wit{\vec u ; \vec x}{A} (l, \vec u ; \vec x , w) & \dfn & \charfn{}{A} (l, \vec u ; \vec x)  \text{ if $A$ is $\Pi_i$} \\
64
	\smallskip
65
	\Wit{\vec u ; \vec x}{A \cor B} (l,\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cor ( ; \Wit{\vec u ; \vec x}{A} (l,\vec u ; \vec x , \vec w^A) ,\Wit{\vec u ; \vec x}{B} (l,\vec u ; \vec x , \vec w^B)  )  \\
66
	\smallskip
67
	\Wit{\vec u ; \vec x}{A \cand B} (l,\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cand ( ; \Wit{\vec u ; \vec x}{A} (l,\vec u ; \vec x , \vec w^A) ,\Wit{\vec u ; \vec x}{B} (l,\vec u ; \vec x , \vec w^B)  )  \\
68
	\smallskip
69
	\Wit{\vec u ; \vec x}{\exists x^\safe . A(x)} (l,\vec u ; \vec x , \vec w , w) & \dfn & \Wit{\vec u ; \vec x , x}{A(x)} ( l,\vec u ; \vec x , w , \vec w )
70
	\\
71
	\smallskip
72
	\Wit{\vec u ; \vec x}{\forall u \leq |t(\vec u;)| . A(x)} (l , \vec u ; \vec x, w) & \dfn & 
73
	\forall u \leq |t(\vec u;)| . \Wit{u , \vec u ; \vec x}{A(u)} (l, u , \vec u ; \vec x, \beta(u;w) )
74
	\end{array}
75
	\]
76
\end{definition}
77

  
78
\anupam{may as well use a single witness variable since need it for sharply bounded quantifiers anyway.}
79

  
80
\anupam{sharply bounded case obtained by sharply bounded lemma}

Formats disponibles : Unified diff