Révision 172 CSL17/soundness.tex

soundness.tex (revision 172)
7 7
	If $\arith^i$ proves $\forall \vec u^\normal . \forall \vec x^\safe . \exists y^\safe . A(\vec u ; \vec x , y)$ then there is a $\mubci{i-1}$ program $f(\vec u ; \vec x)$ such that $\Nat \models A(\vec u ; \vec x , f(\vec u ; \vec x))$.
8 8
\end{theorem}
9 9

  
10
For this we will use length-bounded witnessing.
11 10

  
11

  
12
The main problem for soundness is that we have predicates, for example equality, that take safe arguments in our theory but do not formally satisfy the polychecking lemma for $\mubc$ functions. 
13
For this we will use length-bounded witnessing, borrowing a similar idea from Bellantoni's previous work \cite{Bellantoni95}.
14

  
15
\begin{definition}
16
[Length bounded basic functions]
17
We define \emph{length-bounded equality}, $\eq(l;x,y)$ as the characteristic function of the predicate:
18
\[
19
x \mode l = y \mode l
20
\]
21
\end{definition}
22

  
23
\anupam{Do we need the general form of length-boundedness? E.g. the $*$ functions from Bellantoni's paper? Put above if necessary. Otherwise just add sequence manipulation functions as necessary.}
24

  
25
Notice that $\eq$ is a polymax bounded polyomial checking function on its normal input, and so can be added to $\mubc$ without problems.
26

  
27
\begin{definition}
28
	[Length bounded characteristic functions]
29
	We define $\mubci{}$ programs $\charfn{}{A} (l , \vec u; \vec x)$, parametrised by a formula $A(\vec u ; \vec x)$, as follows.
30
%	If $A$ is a $\Pi_{i}$ formula then:
31
	\[
32
	\begin{array}{rcl}
33
	\charfn{}{s\leq t} (l, \vec u ; \vec x, w) & \dfn & \leqfn(;s,t) \\
34
	\smallskip
35
	\charfn{}{s=t} (l, \vec u ; \vec x, w) & \dfn & \eq(;s,t) \\
36
	\smallskip
37
	\charfn{}{\neg A} (l, \vec u ; \vec x, w) & \dfn & \neg (;\charfn{}{A}(l , \vec u ; \vec x)) \\
38
	\smallskip
39
	\charfn{}{A\cor B} (l, \vec u ; \vec x , w) & \dfn & \cor (; \charfn{}{A} (\vec u ; \vec x , w), \charfn{}{B} (\vec u ;\vec x, w) ) \\
40
	\smallskip
41
	\charfn{}{A\cand B} (l, \vec u ; \vec x , w) & \dfn & \cand(; \charfn{}{A} (\vec u ; \vec x , w), \charfn{}{B} (\vec u ;\vec x, w) ) \\
42
	\smallskip
43
	\charfn{}{\exists x^\safe . A(x)} (l, \vec u ;\vec x,  w) & \dfn & \begin{cases}
44
	1 & \exists x^\safe . \charfn{}{A(x)} (\vec u ;\vec x , x, w) = 1 \\
45
	0 & \text{otherwise} 
46
	\end{cases} \\
47
	\smallskip
48
	\charfn{\vec u; \vec x}{\forall x^\safe . A(x)} (l, \vec u ;\vec x , w) & \dfn & 
49
	\begin{cases}
50
	0 & \exists x^\sigma. \charfn{}{ A(x)} (\vec u; \vec x , x) = 0 \\
51
	1 & \text{otherwise}
52
	\end{cases}
53
	\end{array}
54
	\]
55
\end{definition}

Formats disponibles : Unified diff