Statistiques
| Révision :

root / CSL17 / arithmetic.tex @ 171

Historique | Voir | Annoter | Télécharger (2,69 ko)

1
\section{An arithmetic for the polynomial hierarchy}
2
Our base language is $\{ 0, \succ 0, \succ 1, \pred, + , \times, \smsh , |\cdot| , \leq \}$.
3

    
4
The $\basic$ axioms are as follows:
5
\[
6
\begin{array}{l}
7
\safe (0) \\
8
\succ 0 = 0 \\
9
\safe (x) \cimp \safe (\succ i x) \\
10
\end{array}
11
\]
12

    
13
(Here use a variation of S12 with sharply bounded quantifiers and safe quantifiers)
14

    
15
Use base theory + sharply bounded quantifiers.
16

    
17
\anupam{Perhaps use prefix quantifier instead of sharply bounded (a la Ignatovic?), since plays nicer with sharply bounded lemma?}
18

    
19

    
20

    
21
\begin{definition}
22
[Quantifier hierarchy]
23
We define:
24
\begin{itemize}
25
	\item $\Sigma^\safe_0 = \Pi^\safe_0 $ = sharply bounded formulae. 
26
	\item (Increase with predicative quantifiers)
27
\end{itemize}	
28
\end{definition}
29

    
30

    
31
\anupam{Collection principles for prenexing? Otherwise need to add closure under sharply bounded quantifiers.}
32

    
33

    
34
\begin{definition}
35
Define the theory $\arith^i$ consisting of the following axioms:
36
\begin{itemize}
37
	\item $\basic$;
38
	\item $\cpind{\Sigma^\safe_i } $:
39
\end{itemize}
40
and an inference rule:
41
\[
42
 \dfrac{\forall \vec x^\normal . \exists  y^\safe .  A }{ \forall \vec x^\normal .\exists y^\normal . A}
43
\]
44
\end{definition}
45
\anupam{In induction,for inductive cases, need $u\neq 0$ for $\succ 0$ case.}
46

    
47
\begin{lemma}
48
[Sharply bounded lemma]
49
Let $f_A$ be the characteristic function of a predicate $A(u , \vec u ; \vec x)$.
50
Then the characteristic functions of $\forall u \prefix v . A(u,\vec u ; \vec x)$ and $\exists u \prefix v . A(u , \vec u ; \vec x)$ are in $\bc(f_A)$.
51
\end{lemma}
52
\begin{proof}
53
	We give the $\forall$ case, the $\exists$ case being dual.
54
	The characteristic function $f(v , \vec u ; \vec x)$ is defined by predicative recursion on $v$ as:
55
	\[
56
	\begin{array}{rcl}
57
	f(0, \vec u ; \vec x) & \dfn & f_A (0 , \vec u ; \vec x) \\
58
	f(\succ i v , \vec u ; \vec x) & \dfn & \cond ( ; f_A (\succ i v, \vec u ; \vec x) , 0 , f(v , \vec u ; \vec x) )
59
	\end{array}
60
	\]
61
\end{proof}
62

    
63
Notice that $\prefix$ suffices to encode usual sharply bounded inequalities,
64
since $\forall u \leq |t| . A(u , \vec u ; \vec x) \ciff \forall u \prefix t . A(|u|, \vec u ; \vec x)$.
65

    
66

    
67
\subsection{Graphs of some basic functions}
68
Todo: $+1$,  
69

    
70
\subsection{Encoding sequences in the arithmetic}
71
\todo{}
72

    
73
\anupam{Assume we have a $\Sigma^\safe_1$ predicate $\beta(i,x,y)$, expressing that the $i$th element of the sequence $x$ is $y$, such that $\arith^1 \proves \forall i^\normal , x^\safe . \exists ! y^\safe . \beta (i,x,y)$.}
74

    
75

    
76
\subsection{A sequent calculus presentation}
77
\todo{Write out usual first-order sequent calculus}
78

    
79
\subsection{Free-cut free normal form of proofs}
80
\todo{State theorem, with references (Takeuti, Cook-Nguyen) and present the important corollaries for this work.}