root / CSL17 / arithmetic.tex @ 171
Historique | Voir | Annoter | Télécharger (2,69 ko)
1 |
\section{An arithmetic for the polynomial hierarchy} |
---|---|
2 |
Our base language is $\{ 0, \succ 0, \succ 1, \pred, + , \times, \smsh , |\cdot| , \leq \}$. |
3 |
|
4 |
The $\basic$ axioms are as follows: |
5 |
\[ |
6 |
\begin{array}{l} |
7 |
\safe (0) \\ |
8 |
\succ 0 = 0 \\ |
9 |
\safe (x) \cimp \safe (\succ i x) \\ |
10 |
\end{array} |
11 |
\] |
12 |
|
13 |
(Here use a variation of S12 with sharply bounded quantifiers and safe quantifiers) |
14 |
|
15 |
Use base theory + sharply bounded quantifiers. |
16 |
|
17 |
\anupam{Perhaps use prefix quantifier instead of sharply bounded (a la Ignatovic?), since plays nicer with sharply bounded lemma?} |
18 |
|
19 |
|
20 |
|
21 |
\begin{definition} |
22 |
[Quantifier hierarchy] |
23 |
We define: |
24 |
\begin{itemize} |
25 |
\item $\Sigma^\safe_0 = \Pi^\safe_0 $ = sharply bounded formulae. |
26 |
\item (Increase with predicative quantifiers) |
27 |
\end{itemize} |
28 |
\end{definition} |
29 |
|
30 |
|
31 |
\anupam{Collection principles for prenexing? Otherwise need to add closure under sharply bounded quantifiers.} |
32 |
|
33 |
|
34 |
\begin{definition} |
35 |
Define the theory $\arith^i$ consisting of the following axioms: |
36 |
\begin{itemize} |
37 |
\item $\basic$; |
38 |
\item $\cpind{\Sigma^\safe_i } $: |
39 |
\end{itemize} |
40 |
and an inference rule: |
41 |
\[ |
42 |
\dfrac{\forall \vec x^\normal . \exists y^\safe . A }{ \forall \vec x^\normal .\exists y^\normal . A} |
43 |
\] |
44 |
\end{definition} |
45 |
\anupam{In induction,for inductive cases, need $u\neq 0$ for $\succ 0$ case.} |
46 |
|
47 |
\begin{lemma} |
48 |
[Sharply bounded lemma] |
49 |
Let $f_A$ be the characteristic function of a predicate $A(u , \vec u ; \vec x)$. |
50 |
Then the characteristic functions of $\forall u \prefix v . A(u,\vec u ; \vec x)$ and $\exists u \prefix v . A(u , \vec u ; \vec x)$ are in $\bc(f_A)$. |
51 |
\end{lemma} |
52 |
\begin{proof} |
53 |
We give the $\forall$ case, the $\exists$ case being dual. |
54 |
The characteristic function $f(v , \vec u ; \vec x)$ is defined by predicative recursion on $v$ as: |
55 |
\[ |
56 |
\begin{array}{rcl} |
57 |
f(0, \vec u ; \vec x) & \dfn & f_A (0 , \vec u ; \vec x) \\ |
58 |
f(\succ i v , \vec u ; \vec x) & \dfn & \cond ( ; f_A (\succ i v, \vec u ; \vec x) , 0 , f(v , \vec u ; \vec x) ) |
59 |
\end{array} |
60 |
\] |
61 |
\end{proof} |
62 |
|
63 |
Notice that $\prefix$ suffices to encode usual sharply bounded inequalities, |
64 |
since $\forall u \leq |t| . A(u , \vec u ; \vec x) \ciff \forall u \prefix t . A(|u|, \vec u ; \vec x)$. |
65 |
|
66 |
|
67 |
\subsection{Graphs of some basic functions} |
68 |
Todo: $+1$, |
69 |
|
70 |
\subsection{Encoding sequences in the arithmetic} |
71 |
\todo{} |
72 |
|
73 |
\anupam{Assume we have a $\Sigma^\safe_1$ predicate $\beta(i,x,y)$, expressing that the $i$th element of the sequence $x$ is $y$, such that $\arith^1 \proves \forall i^\normal , x^\safe . \exists ! y^\safe . \beta (i,x,y)$.} |
74 |
|
75 |
|
76 |
\subsection{A sequent calculus presentation} |
77 |
\todo{Write out usual first-order sequent calculus} |
78 |
|
79 |
\subsection{Free-cut free normal form of proofs} |
80 |
\todo{State theorem, with references (Takeuti, Cook-Nguyen) and present the important corollaries for this work.} |