Révision 171 CSL17/soundness.tex
soundness.tex (revision 171) | ||
---|---|---|
7 | 7 |
If $\arith^i$ proves $\forall \vec u^\normal . \forall \vec x^\safe . \exists y^\safe . A(\vec u ; \vec x , y)$ then there is a $\mubci{i-1}$ program $f(\vec u ; \vec x)$ such that $\Nat \models A(\vec u ; \vec x , f(\vec u ; \vec x))$. |
8 | 8 |
\end{theorem} |
9 | 9 |
|
10 |
For this we will use length-bounded witnessing. |
|
11 |
|
Formats disponibles : Unified diff