Révision 171
CSL17/arithmetic.tex (revision 171) | ||
---|---|---|
1 | 1 |
\section{An arithmetic for the polynomial hierarchy} |
2 | 2 |
Our base language is $\{ 0, \succ 0, \succ 1, \pred, + , \times, \smsh , |\cdot| , \leq \}$. |
3 | 3 |
|
4 |
The $\basic$ axioms are as follows: |
|
5 |
\[ |
|
6 |
\begin{array}{l} |
|
7 |
\safe (0) \\ |
|
8 |
\succ 0 = 0 \\ |
|
9 |
\safe (x) \cimp \safe (\succ i x) \\ |
|
10 |
\end{array} |
|
11 |
\] |
|
4 | 12 |
|
5 | 13 |
(Here use a variation of S12 with sharply bounded quantifiers and safe quantifiers) |
6 | 14 |
|
CSL17/ph-macros.tex (revision 171) | ||
---|---|---|
36 | 36 |
\renewcommand{\succ}[1]{s_{#1}} |
37 | 37 |
\newcommand{\cond}{C} |
38 | 38 |
\newcommand{\smsh}{\#} |
39 |
\newcommand{\pair}[3]{\langle ; #1,#2 , #3 \rangle} |
|
39 | 40 |
|
41 |
|
|
40 | 42 |
\newcommand{\safe}{{S}} |
41 | 43 |
\newcommand{\normal}{N} |
42 | 44 |
|
CSL17/completeness.tex (revision 171) | ||
---|---|---|
62 | 62 |
So we have proven $\exists z^\safe . A_f(\vec u ; \vec x , z)$, and unicity can be easily verified. |
63 | 63 |
|
64 | 64 |
\paragraph*{Predicative recursion on notation} |
65 |
|
|
66 |
\anupam{Assume access to the following predicates (makes completeness easier, soundness will be okay): |
|
67 |
\begin{itemize} |
|
68 |
% \item $\pair x y z $ . ``$z$ is the sequence that appends $y$ to the sequence $x$'' |
|
69 |
\item $\pair x y z$. ``$z$ is the sequence that prepends $x$ to the sequence $y$'' |
|
70 |
\item $\beta (i; x ,y)$. ``The $i$th element of the sequence $x$ is $y$.'' |
|
71 |
\end{itemize} |
|
72 |
} |
|
73 |
|
|
65 | 74 |
Now suppose that $f$ is defined by PRN: |
66 | 75 |
\[ |
67 | 76 |
\begin{array}{rcl} |
CSL17/soundness.tex (revision 171) | ||
---|---|---|
7 | 7 |
If $\arith^i$ proves $\forall \vec u^\normal . \forall \vec x^\safe . \exists y^\safe . A(\vec u ; \vec x , y)$ then there is a $\mubci{i-1}$ program $f(\vec u ; \vec x)$ such that $\Nat \models A(\vec u ; \vec x , f(\vec u ; \vec x))$. |
8 | 8 |
\end{theorem} |
9 | 9 |
|
10 |
For this we will use length-bounded witnessing. |
|
11 |
|
CSL17/main.tex (revision 171) | ||
---|---|---|
87 | 87 |
\input{pv-theories} |
88 | 88 |
|
89 | 89 |
\end{document} |
90 |
\grid |
Formats disponibles : Unified diff