Révision 171

CSL17/arithmetic.tex (revision 171)
1 1
\section{An arithmetic for the polynomial hierarchy}
2 2
Our base language is $\{ 0, \succ 0, \succ 1, \pred, + , \times, \smsh , |\cdot| , \leq \}$.
3 3

  
4
The $\basic$ axioms are as follows:
5
\[
6
\begin{array}{l}
7
\safe (0) \\
8
\succ 0 = 0 \\
9
\safe (x) \cimp \safe (\succ i x) \\
10
\end{array}
11
\]
4 12

  
5 13
(Here use a variation of S12 with sharply bounded quantifiers and safe quantifiers)
6 14

  
CSL17/ph-macros.tex (revision 171)
36 36
\renewcommand{\succ}[1]{s_{#1}}
37 37
\newcommand{\cond}{C}
38 38
\newcommand{\smsh}{\#}
39
\newcommand{\pair}[3]{\langle ; #1,#2 , #3 \rangle}
39 40

  
41

  
40 42
\newcommand{\safe}{{S}}
41 43
\newcommand{\normal}{N}
42 44

  
CSL17/completeness.tex (revision 171)
62 62
So we have proven $\exists z^\safe  . A_f(\vec u ; \vec x , z)$, and unicity can be easily verified.
63 63

  
64 64
\paragraph*{Predicative recursion on notation}
65

  
66
\anupam{Assume access to the following predicates (makes completeness easier, soundness will be okay):
67
	\begin{itemize}
68
	%	\item $\pair x y z $ . ``$z$ is the sequence that appends $y$ to the sequence $x$''
69
		\item $\pair x y z$. ``$z$ is the sequence that prepends $x$ to the sequence $y$''
70
		\item $\beta (i; x ,y)$. ``The $i$th element of the sequence $x$ is $y$.''
71
	\end{itemize}
72
	}
73

  
65 74
Now suppose that $f$ is defined by PRN:
66 75
\[
67 76
\begin{array}{rcl}
CSL17/soundness.tex (revision 171)
7 7
	If $\arith^i$ proves $\forall \vec u^\normal . \forall \vec x^\safe . \exists y^\safe . A(\vec u ; \vec x , y)$ then there is a $\mubci{i-1}$ program $f(\vec u ; \vec x)$ such that $\Nat \models A(\vec u ; \vec x , f(\vec u ; \vec x))$.
8 8
\end{theorem}
9 9

  
10
For this we will use length-bounded witnessing.
11

  
CSL17/main.tex (revision 171)
87 87
\input{pv-theories}	
88 88

  
89 89
\end{document}
90
\grid

Formats disponibles : Unified diff