Révision 170 CSL17/completeness.tex
completeness.tex (revision 170) | ||
---|---|---|
49 | 49 |
\exists !z^\safe . A_f(\vec u ; \vec x , z) |
50 | 50 |
\] |
51 | 51 |
Suppose that $\exists x^\safe , y^\safe . (A_g (\vec u ,\vec x , x , y) \cand y=_2 0)$. |
52 |
We can apply minimisation due to the lemma above to find the least $x\in \safe$ such that $\exists y^\safe . (A_g (\vec u ,\vec x , x , y) \cand y=_2 0)$, and we set $z = \succ 1 x$. |
|
53 |
\todo{verify $z\neq 0$ disjunct.} |
|
52 |
We can apply minimisation due to the lemma above to find the least $x\in \safe$ such that $\exists y^\safe . (A_g (\vec u ,\vec x , x , y) \cand y=_2 0)$, and we set $z = \succ 1 x$. So $x= p z$. |
|
53 |
%\todo{verify $z\neq 0$ disjunct.} |
|
54 |
Then $z \neq 0$ holds. Moreover we had $\exists ! y^\safe . A_g(\vec u , \vec x , x , y)$. So we deduce that |
|
55 |
$\forall y^\safe . (A_g (\vec u , \vec x , p z , y) \cimp y=_2 0 ) $. Finally, as $p z$ is the least element such that |
|
56 |
$\exists y^\safe . (A_g (\vec u ,\vec x , p z , y) \cand y=_2 0)$, we deduce |
|
57 |
$\ \forall x^\safe < p z . \forall y^\safe . (A_g (\vec u , \vec x , x , y) \cimp y=_2 1) $. We conclude that the second member of the disjunction |
|
58 |
$A_f(\vec u ; \vec x , z)$ is proven. |
|
54 | 59 |
|
55 |
Otherwise, we have that $\forall x^\safe , y^\safe . (A_g (\vec u , \vec x , x, y) \cimp y=_2 1)$ and so we can set $z=0$.
|
|
60 |
Otherwise, we have that $\forall x^\safe , y^\safe . (A_g (\vec u , \vec x , x, y) \cimp y=_2 1)$, so we can set $z=0$ and the first member of the disjunction $A_f(\vec u ; \vec x , z)$ is proven.
|
|
56 | 61 |
|
62 |
So we have proven $\exists z^\safe . A_f(\vec u ; \vec x , z)$, and unicity can be easily verified. |
|
57 | 63 |
|
58 | 64 |
\paragraph*{Predicative recursion on notation} |
59 | 65 |
Now suppose that $f$ is defined by PRN: |
Formats disponibles : Unified diff