Révision 170

CSL17/completeness.tex (revision 170)
49 49
\exists !z^\safe  . A_f(\vec u ; \vec x , z)
50 50
\]
51 51
Suppose that $\exists x^\safe , y^\safe .  (A_g (\vec u ,\vec x , x , y) \cand y=_2 0)$.
52
We can apply minimisation due to the lemma above to find the least $x\in \safe$ such that $\exists y^\safe .  (A_g (\vec u ,\vec x , x , y) \cand y=_2 0)$, and we set $z = \succ 1 x$.
53
\todo{verify $z\neq 0$ disjunct.} 
52
We can apply minimisation due to the lemma above to find the least $x\in \safe$ such that $\exists y^\safe .  (A_g (\vec u ,\vec x , x , y) \cand y=_2 0)$, and we set $z = \succ 1 x$. So $x= p z$. 
53
%\todo{verify $z\neq 0$ disjunct.} 
54
Then $z \neq 0$ holds. Moreover we had  $\exists ! y^\safe . A_g(\vec u , \vec x , x , y)$. So we deduce that
55
 $\forall y^\safe . (A_g (\vec u , \vec x , p z , y) \cimp y=_2 0 ) $. Finally, as $p z$ is the least element such that
56
  $\exists y^\safe .  (A_g (\vec u ,\vec x , p z , y) \cand y=_2 0)$, we deduce 
57
 $\ \forall x^\safe < p z . \forall y^\safe . (A_g (\vec u , \vec x , x , y) \cimp y=_2 1) $. We conclude that the second member of the disjunction
58
 $A_f(\vec u ; \vec x , z)$ is proven.  
54 59

  
55
Otherwise, we have that $\forall x^\safe , y^\safe . (A_g (\vec u , \vec x , x, y) \cimp y=_2 1)$ and so we can set $z=0$.
60
 Otherwise, we have that $\forall x^\safe , y^\safe . (A_g (\vec u , \vec x , x, y) \cimp y=_2 1)$, so we can set $z=0$ and the first member of the disjunction $A_f(\vec u ; \vec x , z)$ is proven.  
56 61

  
62
So we have proven $\exists z^\safe  . A_f(\vec u ; \vec x , z)$, and unicity can be easily verified.
57 63

  
58 64
\paragraph*{Predicative recursion on notation}
59 65
Now suppose that $f$ is defined by PRN:

Formats disponibles : Unified diff