Statistiques
| Révision :

root / CSL17 / completeness.tex @ 169

Historique | Voir | Annoter | Télécharger (4,98 ko)

1 166 adas
\section{Completeness}
2 166 adas
3 166 adas
The main result of this section is the following:
4 166 adas
5 166 adas
\begin{theorem}
6 166 adas
	\label{thm:completeness}
7 166 adas
	For every $\mubci{i-1}$ program $f(\vec u ; \vec x)$ (which is in $\fphi i$), there is a $\Sigma_i$ formula $A_f(\vec u, \vec x)$ such that $\arith^i$ proves $\forall \vec u \in \normal . \forall \vec x \in \safe. \exists ! y \in \safe . A_f(\vec u , \vec x , y )$ and $\Nat \models \forall \vec u , \vec x. A(\vec u , \vec x , f(\vec u ; \vec x))$.
8 168 adas
\end{theorem}
9 168 adas
10 168 adas
The rest of this section is devoted to a proof of this theorem.
11 168 adas
We proceed by structural induction on a $\mubc{i-1} $ program, dealing with each case in the proceeding paragraphs.
12 168 adas
13 168 adas
\paragraph*{Predicative minimisation}
14 168 adas
Suppose $f(\vec u ; \vec x)$ is defined as $\mu x^{+1} . g(\vec u ; \vec x , x) =_2 0$.
15 168 adas
By definition $g$ is in $\mubci{i-2}$, and so by the inductive hypothesis there is a $\Sigma_{i-1}$ formula $A_g (\vec u , \vec x , x , y)$ computing the graph of $g$ such that,
16 168 adas
\[
17 168 adas
\arith^i \proves \forall \vec u^\normal . \forall \vec x^\safe , x^\safe . \exists ! y^\safe . A_g(\vec u , \vec x , x , y)
18 168 adas
\]
19 168 adas
Let us define $A_f(\vec u ; \vec x , z)$ as:
20 168 adas
\[
21 168 adas
\begin{array}{rl}
22 168 adas
&\left(
23 168 adas
z=0 \  \cand \ \forall x^\safe , y^\safe . (A_g (\vec u , \vec x , x, y) \cimp y=_2 1)
24 168 adas
\right) \\
25 168 adas
\cor & \left(
26 168 adas
\begin{array}{ll}
27 168 adas
z\neq 0
28 168 adas
& \cand\   \forall y^\safe . (A_g (\vec u , \vec x , p z , y) \cimp y=_2 0 ) \\
29 168 adas
& \cand\ \forall x^\safe < p z . \forall y^\safe . (A_g (\vec u , \vec x , x , y) \cimp y=_2 1)
30 168 adas
\end{array}
31 168 adas
\right)
32 168 adas
\end{array}
33 168 adas
\]
34 168 adas
Notice that $A_f$ is $\Pi_{i-1}$, since $A_g$ is $\Sigma_{i-1}$ and occurs only in negative context above, with additional safe universal quantifiers occurring in positive context.
35 168 adas
In particular this means $A_f$ is $\Sigma_i$.
36 168 adas
37 168 adas
Now, to prove totality of $A_f$, we rely on $\Sigma^\safe_{i-1}$-minimisation, which is a consequence of $\cpind{\Sigma^\safe_i}$:
38 168 adas
39 168 adas
\begin{lemma}
40 168 adas
[Minimisation]
41 168 adas
$\arith^i \proves \cmin{\Sigma^\safe_{i-1}}$.
42 168 adas
\end{lemma}
43 168 adas
\begin{proof}
44 168 adas
\todo{}
45 168 adas
\end{proof}
46 168 adas
47 168 adas
Now, working in $\arith^i$, let $\vec u \in \normal , \vec x \in \safe$ and let us prove:
48 168 adas
\[
49 168 adas
\exists !z^\safe  . A_f(\vec u ; \vec x , z)
50 168 adas
\]
51 168 adas
Suppose that $\exists x^\safe , y^\safe .  (A_g (\vec u ,\vec x , x , y) \cand y=_2 0)$.
52 168 adas
We can apply minimisation due to the lemma above to find the least $x\in \safe$ such that $\exists y^\safe .  (A_g (\vec u ,\vec x , x , y) \cand y=_2 0)$, and we set $z = \succ 1 x$.
53 168 adas
\todo{verify $z\neq 0$ disjunct.}
54 168 adas
55 168 adas
Otherwise, we have that $\forall x^\safe , y^\safe . (A_g (\vec u , \vec x , x, y) \cimp y=_2 1)$ and so we can set $z=0$.
56 168 adas
57 168 adas
58 168 adas
\paragraph*{Predicative recursion on notation}
59 168 adas
Now suppose that $f$ is defined by PRN:
60 168 adas
\[
61 168 adas
\begin{array}{rcl}
62 168 adas
f(0 , \vec u ; \vec x) & \dfn & g(\vec u ; \vec x) \\
63 168 adas
f(\succ i u, \vec u ; \vec x) & \dfn & h_i( u , \vec u ; \vec x , f(u , \vec u ; \vec x))
64 168 adas
\end{array}
65 168 adas
\]
66 168 adas
67 168 adas
\anupam{using $\beta(i,x,y)$ predicate for sequences: ``$i$th element of $x$ is $y$''. Provably total in $\arith^1$.}
68 168 adas
69 168 adas
Suppose we have $\Sigma^\safe_i$ formulae $A_g (\vec u ; \vec x,y)$ and $A_{h_i} (u , \vec u ; \vec x , y , z)$ computing the graphs of $g$ and $h_i$ respectively, provably total in $\arith^i$.
70 168 adas
We define $A_f (u ,\vec u ; \vec x , y)$ as,
71 168 adas
\[
72 168 adas
\exists w^\safe . \left(
73 168 adas
\begin{array}{ll}
74 168 adas
&
75 168 adas
%Seq(z) \cand
76 168 adas
\exists y_0 . ( A_g (\vec u , \vec x , y_0) \cand \beta(0, w , y_0) ) \cand \beta(|u|, w,y ) \\
77 168 adas
\cand & \forall k < |u| . \exists y_k , y_{k+1} . ( \beta (k, w, y_i) \cand \beta (k+1 ,w, y_{k+1})  \cand A_{h_i} (u , \vec u ; \vec x , y_k , y_{k+1}) )
78 168 adas
\end{array}
79 168 adas
\right)
80 168 adas
\]
81 168 adas
which is $\Sigma^\safe_i$ by inspection, and indeed defines the graph of $f$.
82 168 adas
83 168 adas
To show totality, let $\vec u \in \normal, \vec x \in \safe$ and proceed by induction on $u \in \normal$.
84 168 adas
The base case, when $u=0$, is immediate from the totality of $A_g$, so for the inductive case we need to show:
85 168 adas
\[
86 168 adas
\exists y^\safe . A_f (u , \vec u ; \vec x , y)
87 168 adas
\quad \seqar \quad
88 168 adas
\exists z^\safe . A_f (s_i u, \vec u ; \vec x , y)
89 168 adas
\]
90 168 adas
91 168 adas
\anupam{here need to `add' element to the computation sequence. Need to do this earlier in the paper.}
92 168 adas
93 168 adas
\anupam{for inductive cases, need $u\neq 0$ for $\succ 0$ case.}
94 168 adas
95 168 adas
\paragraph*{Safe composition}
96 168 adas
Now suppose that $f$ is defined by safe composition:
97 168 adas
\[
98 168 adas
f(\vec u ; \vec x) \quad \dfn \quad g( \vec h(\vec u;) ; \vec h' (\vec u ; \vec x) )
99 168 adas
\]
100 168 adas
101 168 adas
By the inductive hypothesis, let us suppose that we have $\Sigma^\safe_i $ definitions $A_g , A_{h_i} , A_{h_j'} $ of the graphs of $g , h_i , h_j'$ respectively, which are provably total etc.
102 168 adas
In particular, by Raising, we have that $\forall \vec u^\normal . \exists v^\normal . A_{h_i} (\vec u , v)$.
103 168 adas
104 168 adas
We define $A_f (\vec u , \vec x , z)$ defining the graph of $f$ as follows:
105 168 adas
\[
106 168 adas
\exists \vec v^\normal . \exists \vec y^\safe .
107 168 adas
\left(
108 168 adas
\bigwedge\limits_i A_{h_i} (\vec u , v_i)
109 168 adas
\wedge
110 168 adas
\bigwedge\limits_j A_{h_j'} (\vec u ; \vec x , y_j)
111 168 adas
\wedge
112 168 adas
A_g ( \vec v , \vec y , z )
113 168 adas
\right)
114 168 adas
\]
115 168 adas
The provable totality of $A_f$ follows from simple first-order reasoning, mostly cuts and basic quantifier manipulations.
116 168 adas
117 168 adas
\todo{elaborate}
118 168 adas
119 168 adas
\paragraph*{Other cases}
120 168 adas
\todo{}
121 168 adas
122 168 adas
123 168 adas
124 168 adas
125 168 adas
126 168 adas
127 168 adas
128 168 adas
129 168 adas
130 168 adas
131 168 adas
132 168 adas
133 168 adas
134 168 adas
135 168 adas
136 168 adas
137 168 adas
138 168 adas
139 168 adas
140 168 adas
141 168 adas
142 168 adas
143 168 adas