Révision 168 CSL17/preliminaries.tex
preliminaries.tex (revision 168) | ||
---|---|---|
46 | 46 |
\begin{enumerate} |
47 | 47 |
\item The constant functions $\epsilon^k$ which takes $k$ arguments and outputs $\epsilon \in \Word$. |
48 | 48 |
\item The projection functions $\pi^{m,n}_k ( x_1 , \dots , x_m ; x_{m+1} , \dots, x_{m+n} ) := x_k$ for $n,m \in \Word$ and $1 \leq k \leq m+n$. |
49 |
\item The successor functions $\succ_i ( ; x) := xi$ for $i = 0,1$.
|
|
49 |
\item The successor functions $\succ i ( ; x) := xi$ for $i = 0,1$.
|
|
50 | 50 |
\item The predecessor function $\pred (; x) := \begin{cases} |
51 | 51 |
\epsilon & \mbox{ if } x = \epsilon \\ |
52 | 52 |
x' & \mbox{ if } x = x'i |
... | ... | |
77 | 77 |
\[ |
78 | 78 |
\begin{array}{rcl} |
79 | 79 |
f(0, \vec v ; \vec x) & := & g(\vec v ; \vec x) \\ |
80 |
f (\succ_i u , \vec v ; \vec x ) & := & h_i ( u , \vec v ; \vec x , f (u , \vec v ; \vec x) )
|
|
80 |
f (\succ i u , \vec v ; \vec x ) & := & h_i ( u , \vec v ; \vec x , f (u , \vec v ; \vec x) )
|
|
81 | 81 |
\end{array} |
82 | 82 |
\] |
83 | 83 |
for $i = 0,1$, so long as the expressions are well-formed. % (i.e.\ in number/sort of arguments). |
... | ... | |
101 | 101 |
\[ |
102 | 102 |
\begin{array}{rcl} |
103 | 103 |
f^j(0, \vec v ; \vec x) & := & g^j(\vec v ; \vec x) \\ |
104 |
f^j(\succ_i u , \vec v ; \vec x ) & := & h^j_i ( u , \vec v ; \vec x , \vec{f} (u , \vec v ; \vec x) )
|
|
104 |
f^j(\succ i u , \vec v ; \vec x ) & := & h^j_i ( u , \vec v ; \vec x , \vec{f} (u , \vec v ; \vec x) )
|
|
105 | 105 |
\end{array} |
106 | 106 |
\] |
107 | 107 |
for $i = 0,1$, so long as the expressions are well-formed. |
Formats disponibles : Unified diff