Révision 168 CSL17/arithmetic.tex

arithmetic.tex (revision 168)
1 1
\section{An arithmetic for the polynomial hierarchy}
2
Our base language is $\{ 0, \succ 0, \succ 1, \pred, + , \times, \smsh , |\cdot| , \leq \}$.
2 3

  
4

  
3 5
(Here use a variation of S12 with sharply bounded quantifiers and safe quantifiers)
4 6

  
5 7
Use base theory + sharply bounded quantifiers.
6 8

  
7 9
\anupam{Perhaps use prefix quantifier instead of sharply bounded (a la Ignatovic?), since plays nicer with sharply bounded lemma?}
8 10

  
11

  
12

  
9 13
\begin{definition}
10 14
[Quantifier hierarchy]
11 15
We define:
......
15 19
\end{itemize}	
16 20
\end{definition}
17 21

  
22

  
23
\anupam{Collection principles for prenexing? Otherwise need to add closure under sharply bounded quantifiers.}
24

  
25

  
18 26
\begin{definition}
19 27
Define the theory $\arith^i$ consisting of the following axioms:
20 28
\begin{itemize}
21 29
	\item $\basic$;
22 30
	\item $\cpind{\Sigma^\safe_i } $:
23
	\item $\forall \vec x \in \normal . \exists  y \in \safe .  A \cimp \forall \vec x \in \normal .\exists y\in \normal . A$ (raising) .
24 31
\end{itemize}
32
and an inference rule:
33
\[
34
 \dfrac{\forall \vec x^\normal . \exists  y^\safe .  A }{ \forall \vec x^\normal .\exists y^\normal . A}
35
\]
25 36
\end{definition}
37
\anupam{In induction,for inductive cases, need $u\neq 0$ for $\succ 0$ case.}
26 38

  
27

  
28 39
\begin{lemma}
29 40
[Sharply bounded lemma]
30 41
Let $f_A$ be the characteristic function of a predicate $A(u , \vec u ; \vec x)$.
......
42 53
\end{proof}
43 54

  
44 55
Notice that $\prefix$ suffices to encode usual sharply bounded inequalities,
45
since $\forall u \leq |t| . A(u , \vec u ; \vec x) \ciff \forall u \prefix t . A(|u|, \vec u ; \vec x)$.
56
since $\forall u \leq |t| . A(u , \vec u ; \vec x) \ciff \forall u \prefix t . A(|u|, \vec u ; \vec x)$.
57

  
58

  
59
\subsection{Graphs of some basic functions}
60
Todo: $+1$,  
61

  
62
\subsection{Encoding sequences in the arithmetic}
63
\todo{}
64

  
65
\anupam{Assume we have a $\Sigma^\safe_1$ predicate $\beta(i,x,y)$, expressing that the $i$th element of the sequence $x$ is $y$, such that $\arith^1 \proves \forall i^\normal , x^\safe . \exists ! y^\safe . \beta (i,x,y)$.}
66

  
67

  
68
\subsection{A sequent calculus presentation}
69
\todo{Write out usual first-order sequent calculus}
70

  
71
\subsection{Free-cut free normal form of proofs}
72
\todo{State theorem, with references (Takeuti, Cook-Nguyen) and present the important corollaries for this work.}

Formats disponibles : Unified diff