Révision 168 CSL17/arithmetic.tex
arithmetic.tex (revision 168) | ||
---|---|---|
1 | 1 |
\section{An arithmetic for the polynomial hierarchy} |
2 |
Our base language is $\{ 0, \succ 0, \succ 1, \pred, + , \times, \smsh , |\cdot| , \leq \}$. |
|
2 | 3 |
|
4 |
|
|
3 | 5 |
(Here use a variation of S12 with sharply bounded quantifiers and safe quantifiers) |
4 | 6 |
|
5 | 7 |
Use base theory + sharply bounded quantifiers. |
6 | 8 |
|
7 | 9 |
\anupam{Perhaps use prefix quantifier instead of sharply bounded (a la Ignatovic?), since plays nicer with sharply bounded lemma?} |
8 | 10 |
|
11 |
|
|
12 |
|
|
9 | 13 |
\begin{definition} |
10 | 14 |
[Quantifier hierarchy] |
11 | 15 |
We define: |
... | ... | |
15 | 19 |
\end{itemize} |
16 | 20 |
\end{definition} |
17 | 21 |
|
22 |
|
|
23 |
\anupam{Collection principles for prenexing? Otherwise need to add closure under sharply bounded quantifiers.} |
|
24 |
|
|
25 |
|
|
18 | 26 |
\begin{definition} |
19 | 27 |
Define the theory $\arith^i$ consisting of the following axioms: |
20 | 28 |
\begin{itemize} |
21 | 29 |
\item $\basic$; |
22 | 30 |
\item $\cpind{\Sigma^\safe_i } $: |
23 |
\item $\forall \vec x \in \normal . \exists y \in \safe . A \cimp \forall \vec x \in \normal .\exists y\in \normal . A$ (raising) . |
|
24 | 31 |
\end{itemize} |
32 |
and an inference rule: |
|
33 |
\[ |
|
34 |
\dfrac{\forall \vec x^\normal . \exists y^\safe . A }{ \forall \vec x^\normal .\exists y^\normal . A} |
|
35 |
\] |
|
25 | 36 |
\end{definition} |
37 |
\anupam{In induction,for inductive cases, need $u\neq 0$ for $\succ 0$ case.} |
|
26 | 38 |
|
27 |
|
|
28 | 39 |
\begin{lemma} |
29 | 40 |
[Sharply bounded lemma] |
30 | 41 |
Let $f_A$ be the characteristic function of a predicate $A(u , \vec u ; \vec x)$. |
... | ... | |
42 | 53 |
\end{proof} |
43 | 54 |
|
44 | 55 |
Notice that $\prefix$ suffices to encode usual sharply bounded inequalities, |
45 |
since $\forall u \leq |t| . A(u , \vec u ; \vec x) \ciff \forall u \prefix t . A(|u|, \vec u ; \vec x)$. |
|
56 |
since $\forall u \leq |t| . A(u , \vec u ; \vec x) \ciff \forall u \prefix t . A(|u|, \vec u ; \vec x)$. |
|
57 |
|
|
58 |
|
|
59 |
\subsection{Graphs of some basic functions} |
|
60 |
Todo: $+1$, |
|
61 |
|
|
62 |
\subsection{Encoding sequences in the arithmetic} |
|
63 |
\todo{} |
|
64 |
|
|
65 |
\anupam{Assume we have a $\Sigma^\safe_1$ predicate $\beta(i,x,y)$, expressing that the $i$th element of the sequence $x$ is $y$, such that $\arith^1 \proves \forall i^\normal , x^\safe . \exists ! y^\safe . \beta (i,x,y)$.} |
|
66 |
|
|
67 |
|
|
68 |
\subsection{A sequent calculus presentation} |
|
69 |
\todo{Write out usual first-order sequent calculus} |
|
70 |
|
|
71 |
\subsection{Free-cut free normal form of proofs} |
|
72 |
\todo{State theorem, with references (Takeuti, Cook-Nguyen) and present the important corollaries for this work.} |
Formats disponibles : Unified diff