Révision 166

CSL17/arithmetic.tex (revision 166)
1
\section{A two-sorted arithmetic for the polynomial hierarchy}
1
\section{An arithmetic for the polynomial hierarchy}
2 2

  
3 3
(Here use a variation of S12 with sharply bounded quantifiers and safe quantifiers)
4 4

  
......
16 16
\end{definition}
17 17

  
18 18
\begin{definition}
19
Define the theory $\arith^i$ as $\basic + \cpind{\Sigma^\safe_i }$	
19
Define the theory $\arith^i$ consisting of the following axioms:
20
\begin{itemize}
21
	\item $\basic$;
22
	\item $\cpind{\Sigma^\safe_i } $:
23
	\item $\forall \vec x \in \normal . \exists  y \in \safe .  A \cimp \forall \vec x \in \normal .\exists y\in \normal . A$ (raising) .
24
\end{itemize}
20 25
\end{definition}
21 26

  
22 27

  
CSL17/ph-macros.tex (revision 166)
12 12
%\newtheorem{definition}[theorem]{Definition}
13 13

  
14 14
\newcommand{\Word}{\mathbb{W}}
15
\newcommand{\Nat}{\mathbb{N}}
15 16
\newcommand{\arith}{B}
16 17
\newcommand{\basic}{\mathit{BASIC}}
17 18

  
......
33 34
\renewcommand{\succ}[1]{s_i}
34 35
\newcommand{\cond}{C}
35 36

  
36
\newcommand{\safe}{\sigma}
37
\newcommand{\normal}{\nu}
37
\newcommand{\safe}{{S}}
38
\newcommand{\normal}{N}
38 39

  
39 40
\newcommand{\pv}{\mathit{PV}}
40 41
\newcommand{\pvbci}[1]{\pv^{#1}_{\mathrm{BC}}}
CSL17/conclusions.tex (revision 166)
11 11

  
12 12
\anupam{By the way, Cantini asks for the provably total function of arbitrary safe induction. We kind of answer that with `PH'.}
13 13

  
14
\anupam{Also, need some weird dual of Barcan's formula, perhaps: $\Box \exists x . A \cimp \exists x . \Box A$. This is validated by the existence of skolem functions, but syntactically requires a further axiom in the absence of comprehension.}
15

  
14 16
\subsection{Comparison to PVi and Si2}
15 17
We believe our theories can be embedded into their analogues, again generalising results of Bellantoni.
CSL17/further.tex (revision 166)
1
\section{Further results}
CSL17/completeness.tex (revision 166)
1
\section{Completeness}
2

  
3
The main result of this section is the following:
4

  
5
\begin{theorem}
6
	\label{thm:completeness}
7
	For every $\mubci{i-1}$ program $f(\vec u ; \vec x)$ (which is in $\fphi i$), there is a $\Sigma_i$ formula $A_f(\vec u, \vec x)$ such that $\arith^i$ proves $\forall \vec u \in \normal . \forall \vec x \in \safe. \exists ! y \in \safe . A_f(\vec u , \vec x , y )$ and $\Nat \models \forall \vec u , \vec x. A(\vec u , \vec x , f(\vec u ; \vec x))$.
8
\end{theorem}
CSL17/soundness.tex (revision 166)
1
\section{Soundness}
CSL17/main.tex (revision 166)
58 58
\input{intro}
59 59
\input{preliminaries}
60 60
\input{sequence-coding}
61
\input{pv-theories}
62 61
\input{arithmetic}
62
\input{soundness}
63
\input{completeness}
64
\input{further}
63 65

  
64 66
\input{conclusions}
65 67

  
68
\newpage
69
\appendix
70
\input{pv-theories}	
66 71

  
67 72
%\subparagraph*{Acknowledgements.}
68 73
%

Formats disponibles : Unified diff