Révision 166
CSL17/arithmetic.tex (revision 166) | ||
---|---|---|
1 |
\section{A two-sorted arithmetic for the polynomial hierarchy}
|
|
1 |
\section{An arithmetic for the polynomial hierarchy}
|
|
2 | 2 |
|
3 | 3 |
(Here use a variation of S12 with sharply bounded quantifiers and safe quantifiers) |
4 | 4 |
|
... | ... | |
16 | 16 |
\end{definition} |
17 | 17 |
|
18 | 18 |
\begin{definition} |
19 |
Define the theory $\arith^i$ as $\basic + \cpind{\Sigma^\safe_i }$ |
|
19 |
Define the theory $\arith^i$ consisting of the following axioms: |
|
20 |
\begin{itemize} |
|
21 |
\item $\basic$; |
|
22 |
\item $\cpind{\Sigma^\safe_i } $: |
|
23 |
\item $\forall \vec x \in \normal . \exists y \in \safe . A \cimp \forall \vec x \in \normal .\exists y\in \normal . A$ (raising) . |
|
24 |
\end{itemize} |
|
20 | 25 |
\end{definition} |
21 | 26 |
|
22 | 27 |
|
CSL17/ph-macros.tex (revision 166) | ||
---|---|---|
12 | 12 |
%\newtheorem{definition}[theorem]{Definition} |
13 | 13 |
|
14 | 14 |
\newcommand{\Word}{\mathbb{W}} |
15 |
\newcommand{\Nat}{\mathbb{N}} |
|
15 | 16 |
\newcommand{\arith}{B} |
16 | 17 |
\newcommand{\basic}{\mathit{BASIC}} |
17 | 18 |
|
... | ... | |
33 | 34 |
\renewcommand{\succ}[1]{s_i} |
34 | 35 |
\newcommand{\cond}{C} |
35 | 36 |
|
36 |
\newcommand{\safe}{\sigma}
|
|
37 |
\newcommand{\normal}{\nu}
|
|
37 |
\newcommand{\safe}{{S}}
|
|
38 |
\newcommand{\normal}{N}
|
|
38 | 39 |
|
39 | 40 |
\newcommand{\pv}{\mathit{PV}} |
40 | 41 |
\newcommand{\pvbci}[1]{\pv^{#1}_{\mathrm{BC}}} |
CSL17/conclusions.tex (revision 166) | ||
---|---|---|
11 | 11 |
|
12 | 12 |
\anupam{By the way, Cantini asks for the provably total function of arbitrary safe induction. We kind of answer that with `PH'.} |
13 | 13 |
|
14 |
\anupam{Also, need some weird dual of Barcan's formula, perhaps: $\Box \exists x . A \cimp \exists x . \Box A$. This is validated by the existence of skolem functions, but syntactically requires a further axiom in the absence of comprehension.} |
|
15 |
|
|
14 | 16 |
\subsection{Comparison to PVi and Si2} |
15 | 17 |
We believe our theories can be embedded into their analogues, again generalising results of Bellantoni. |
CSL17/further.tex (revision 166) | ||
---|---|---|
1 |
\section{Further results} |
CSL17/completeness.tex (revision 166) | ||
---|---|---|
1 |
\section{Completeness} |
|
2 |
|
|
3 |
The main result of this section is the following: |
|
4 |
|
|
5 |
\begin{theorem} |
|
6 |
\label{thm:completeness} |
|
7 |
For every $\mubci{i-1}$ program $f(\vec u ; \vec x)$ (which is in $\fphi i$), there is a $\Sigma_i$ formula $A_f(\vec u, \vec x)$ such that $\arith^i$ proves $\forall \vec u \in \normal . \forall \vec x \in \safe. \exists ! y \in \safe . A_f(\vec u , \vec x , y )$ and $\Nat \models \forall \vec u , \vec x. A(\vec u , \vec x , f(\vec u ; \vec x))$. |
|
8 |
\end{theorem} |
CSL17/soundness.tex (revision 166) | ||
---|---|---|
1 |
\section{Soundness} |
CSL17/main.tex (revision 166) | ||
---|---|---|
58 | 58 |
\input{intro} |
59 | 59 |
\input{preliminaries} |
60 | 60 |
\input{sequence-coding} |
61 |
\input{pv-theories} |
|
62 | 61 |
\input{arithmetic} |
62 |
\input{soundness} |
|
63 |
\input{completeness} |
|
64 |
\input{further} |
|
63 | 65 |
|
64 | 66 |
\input{conclusions} |
65 | 67 |
|
68 |
\newpage |
|
69 |
\appendix |
|
70 |
\input{pv-theories} |
|
66 | 71 |
|
67 | 72 |
%\subparagraph*{Acknowledgements.} |
68 | 73 |
% |
Formats disponibles : Unified diff