Révision 164 CSL17/preliminaries.tex
preliminaries.tex (revision 164) | ||
---|---|---|
188 | 188 |
\end{lemma} |
189 | 189 |
Finally we can state an important lemma about $\mubc$: |
190 | 190 |
\begin{lemma}[Polychecking Lemma, \cite{BellantoniThesis}] |
191 |
Let $\Phi$ be a class of polymax bounded functions. If $f(\vec u; \vec x)$ is in $\mubc(\Phi)$, then $f$ is a polymax bounded function and a polynomial checking function on $\vec u$.
|
|
191 |
Let $\Phi$ be a class of polymax bounded polynomial checking functions. If $f(\vec u; \vec x)$ is in $\mubc(\Phi)$, then $f$ is a polymax bounded function polynomial checking function on $\vec u$.
|
|
192 | 192 |
\end{lemma} |
193 | 193 |
|
Formats disponibles : Unified diff