Révision 164

CSL17/preliminaries.tex (revision 164)
188 188
 \end{lemma}
189 189
 Finally we can state an important lemma about $\mubc$:
190 190
 \begin{lemma}[Polychecking Lemma, \cite{BellantoniThesis}]
191
 Let $\Phi$ be a class of polymax bounded functions. If $f(\vec u; \vec x)$ is in $\mubc(\Phi)$, then $f$ is  a polymax bounded function and a polynomial checking function on $\vec u$.
191
 Let $\Phi$ be a class of polymax bounded polynomial checking functions. If $f(\vec u; \vec x)$ is in $\mubc(\Phi)$, then $f$ is  a polymax bounded function  polynomial checking function on $\vec u$.
192 192
 \end{lemma}
193 193
 

Formats disponibles : Unified diff