Révision 163

CSL17/preliminaries.tex (revision 163)
8 8
%(include closure properties)
9 9

  
10 10
\begin{definition}
11
Given $i\geq 0$, a  language $L$ belongs to the class $\sigp{i}$ off there exists a polynomial time predicate $A$ and a polynomial $q$ such that:
11
Given $i\geq 0$, a  language $L$ belongs to the class $\sigp{i}$ if there exists a polynomial time predicate $A$ and a polynomial $q$ such that:
12 12
$$ x \in L \Leftrightarrow \exists y_1 \in \{0,1\}^{q(\size{x})}\forall y_2 \in \{0,1\}^{q(\size{x})}\dots Q_iy_i\in \{0,1\}^{q(\size{x})}\ A(x,y_1,\dots,y_i)=1$$
13 13
where $Q_i=\forall$ (resp. $Q_i=\exists$) if $i$ is even (resp. odd).
14 14

  
......
162 162
\end{itemize}
163 163
 \end{definition}
164 164
 One then obtains:
165
 \begin{theorem}[\cite{BellantoniThesis}]
165
 \begin{theorem}[\cite{BellantoniThesis, Bellantoni95}]
166 166
 The class of functions representable by $\mubc$ programs is $\fph$, and for each $i$ the class representable by $\mubc^i$ programs is $\fphi{i}$.
167 167
 \end{theorem}
168 168
 We will also need an intermediary lemma, also proved in \cite{BellantoniThesis}.
CSL17/ph-biblio.bib (revision 163)
48 48
  pages     = {97--110},
49 49
  year      = {1992}
50 50
 }
51
 
52
 @inproceedings{Bellantoni95,
53
  author    = {Stephen Bellantoni},
54
  title     = {Predicative Recursion and The Polytime Hierarchy},
55
  booktitle = {Feasible Mathematics II},
56
  pages     = {15-29},
57
    series    = {Progress in Computer Science and Applied Logic},
58
  volume    = {13},
59
  editors ={Clote P., Remmel J.B.}, 
60
  publisher = {Birkhauser Boston},
61
  year      = {1995}
62
 }
51 63

  
64

  
52 65
@inproceedings{Cobham,
53 66
	author = {Cobham, A.},
54 67
	title = {On the intrinsic computational difficulty of functions},

Formats disponibles : Unified diff