Révision 162 CSL17/preliminaries.tex

preliminaries.tex (revision 162)
14 14

  
15 15
The class $\pip{i}$ is defined similarly but with first quantifier $\forall$ instead of $\exists$. 
16 16
\end{definition}
17
In particular: $\sigp{0}=\pip{0}=\ptime$, $\sigp{1}=\np$, $\pip{1}=\conp$.
17
In particular: $\sigp{0}=\pip{0}=\ptime$, $\sigp{1}=\np$, $\pip{1}=\conp$. Note that for any $i$ we have $\pip{i}=\mathbf{co}\sigp{i}$ and $\sigp{i}\subseteq \pip{i+1}$,  $\pip{i}\subseteq \sigp{i+1}$.
18 18

  
19 19
The polynomial hierarchy is defined as $\ph:=\cup_i \sigp{i}$, and we also have $\ph=\cup_i \pip{i}$.
20 20

  
......
23 23

  
24 24
We now define the following function classes:
25 25
\begin{eqnarray*}
26
 \fphi{i+1} &= & \fptime(\sigp{i}),\\
27
 \fph &=& \cup_i  \fphi{i}. 
26
 \fphi{i+1} &:= & \fptime(\sigp{i}),\\
27
 \fph &:=& \cup_i  \fphi{i}. 
28 28
\end{eqnarray*}
29 29
One can then check that $ \fphi{i+1} =  \fptime(\pip{i})=  \fptime(\sigp{i}\cup \pip{i})$.
30 30

  

Formats disponibles : Unified diff