Révision 162
CSL17/preliminaries.tex (revision 162) | ||
---|---|---|
14 | 14 |
|
15 | 15 |
The class $\pip{i}$ is defined similarly but with first quantifier $\forall$ instead of $\exists$. |
16 | 16 |
\end{definition} |
17 |
In particular: $\sigp{0}=\pip{0}=\ptime$, $\sigp{1}=\np$, $\pip{1}=\conp$. |
|
17 |
In particular: $\sigp{0}=\pip{0}=\ptime$, $\sigp{1}=\np$, $\pip{1}=\conp$. Note that for any $i$ we have $\pip{i}=\mathbf{co}\sigp{i}$ and $\sigp{i}\subseteq \pip{i+1}$, $\pip{i}\subseteq \sigp{i+1}$.
|
|
18 | 18 |
|
19 | 19 |
The polynomial hierarchy is defined as $\ph:=\cup_i \sigp{i}$, and we also have $\ph=\cup_i \pip{i}$. |
20 | 20 |
|
... | ... | |
23 | 23 |
|
24 | 24 |
We now define the following function classes: |
25 | 25 |
\begin{eqnarray*} |
26 |
\fphi{i+1} &= & \fptime(\sigp{i}),\\ |
|
27 |
\fph &=& \cup_i \fphi{i}. |
|
26 |
\fphi{i+1} &:= & \fptime(\sigp{i}),\\
|
|
27 |
\fph &:=& \cup_i \fphi{i}.
|
|
28 | 28 |
\end{eqnarray*} |
29 | 29 |
One can then check that $ \fphi{i+1} = \fptime(\pip{i})= \fptime(\sigp{i}\cup \pip{i})$. |
30 | 30 |
|
Formats disponibles : Unified diff