Révision 161 CSL17/preliminaries.tex

preliminaries.tex (revision 161)
5 5
\anupam{Should recall polymax bounded functions and the polychecking lemma, e.g.\ from Bellantoni's FPH paper or thesis. Quite important, even if proof not given.}
6 6

  
7 7
\subsection{Polynomial hierarchy}
8
(include closure properties)
8
%(include closure properties)
9 9

  
10
\begin{definition}
11
Given $i\geq 0$, a  language $L$ belongs to the class $\sigp{i}$ off there exists a polynomial time predicate $A$ and a polynomial $q$ such that:
12
$$ x \in L \Leftrightarrow \exists y_1 \in \{0,1\}^{q(\size{x})}\forall y_2 \in \{0,1\}^{q(\size{x})}\dots Q_iy_i\in \{0,1\}^{q(\size{x})}\ A(x,y_1,\dots,y_i)=1$$
13
where $Q_i=\forall$ (resp. $Q_i=\exists$) if $i$ is even (resp. odd).
14

  
15
The class $\pip{i}$ is defined similarly but with first quantifier $\forall$ instead of $\exists$. 
16
\end{definition}
17
In particular: $\sigp{0}=\pip{0}=\ptime$, $\sigp{1}=\np$, $\pip{1}=\conp$.
18

  
19
The polynomial hierarchy is defined as $\ph:=\cup_i \sigp{i}$, and we also have $\ph=\cup_i \pip{i}$.
20

  
21
Given a language $L$ we denote as $\fptime(L)$ the class of functions computable by a deterministic
22
polynomial time Turing machine with oracle $L$.
23

  
24
We now define the following function classes:
25
\begin{eqnarray*}
26
 \fphi{i+1} &= & \fptime(\sigp{i}),\\
27
 \fph &=& \cup_i  \fphi{i}. 
28
\end{eqnarray*}
29
One can then check that $ \fphi{i+1} =  \fptime(\pip{i})=  \fptime(\sigp{i}\cup \pip{i})$.
30

  
10 31
\subsection{Bellantoni's characterisation using predicative minimisation}
11 32
(perhaps compare with Cobham's using limited recursion)
12 33

  

Formats disponibles : Unified diff