Révision 160

CSL17/preliminaries.tex (revision 160)
152 152
%$\size{u}$
153 153
  $$ \size{f(\vec u; \vec x)} \leq q(\size{u_1} , \dots , \size{u_k}) + \max_j \size{x_j}.$$
154 154
 \end{definition}
155
% \begin{lemma}
156
% Let $\Phi$ be a class of polymax bounded functions. If $f$ is in $\mubc(\Phi)$
157
% \end{lemma}
158
\nb{polychecking lemma still to be added}
155
  
156
 We define the function $\mode$ by $u\mode x:= u \mod 2^{\size{x}}$.
157
 \begin{definition}
158
 A function $f(\vec u; \vec x)$ is a \textit{polynomial checking function} on $\vec u$ if there exists a polynomial $q$
159
 such that, for any $\vec u$, $\vec x$, $y$ and $z$ such that $\size{y} \geq q(\size{\vec u})+ \size{z}$ we have:
160
 $$ f(\vec u; \vec x) \mode z = f(\vec u; \vec x \mode y)\mode z.$$
161
 A polynomial $q$ satisfying this condition is called a \textit{threshold} for $f$.
162
 \end{definition}
163
 One then has:
164
 \begin{lemma}[Bounded Minimization, \cite{BellantoniThesis}]
165
If  $f(\vec u; \vec x,y)$ is a polynomial checking function on $\vec u$ and $q$ is a threshold, then for any $\vec u$ and $\vec x$ we have:
166
$$ (\exists y.   f(\vec u; \vec x,y)\mbox{ mod } 2=0) \Rightarrow (\exists y.  (\size{y}\leq q(\size{\vec{x}})+2) \mbox{ and } f(\vec u; \vec x,y) \mbox{ mod } 2=0) .$$
167
 \end{lemma}
168
 Finally we can state an important lemma about $\mubc$:
169
 \begin{lemma}[Polychecking Lemma, \cite{BellantoniThesis}]
170
 Let $\Phi$ be a class of polymax bounded functions. If $f(\vec u; \vec x)$ is in $\mubc(\Phi)$, then $f$ is  a polymax bounded function and a polynomial checking function on $\vec u$.
171
 \end{lemma}
159 172
 
CSL17/ph-macros.tex (revision 160)
60 60
\newcommand{\cand}{\wedge}
61 61
\newcommand{\ciff}{\equiv}
62 62

  
63
\newcommand{\size}[1]{|#1|}    %% length of a word
63
\newcommand{\size}[1]{|#1|}                        %% length of a word
64
\newcommand{\mode}{\; \underline{\mbox{mod}}\;}   %% mod 2^{|x|}

Formats disponibles : Unified diff