Révision 160
CSL17/preliminaries.tex (revision 160) | ||
---|---|---|
152 | 152 |
%$\size{u}$ |
153 | 153 |
$$ \size{f(\vec u; \vec x)} \leq q(\size{u_1} , \dots , \size{u_k}) + \max_j \size{x_j}.$$ |
154 | 154 |
\end{definition} |
155 |
% \begin{lemma} |
|
156 |
% Let $\Phi$ be a class of polymax bounded functions. If $f$ is in $\mubc(\Phi)$ |
|
157 |
% \end{lemma} |
|
158 |
\nb{polychecking lemma still to be added} |
|
155 |
|
|
156 |
We define the function $\mode$ by $u\mode x:= u \mod 2^{\size{x}}$. |
|
157 |
\begin{definition} |
|
158 |
A function $f(\vec u; \vec x)$ is a \textit{polynomial checking function} on $\vec u$ if there exists a polynomial $q$ |
|
159 |
such that, for any $\vec u$, $\vec x$, $y$ and $z$ such that $\size{y} \geq q(\size{\vec u})+ \size{z}$ we have: |
|
160 |
$$ f(\vec u; \vec x) \mode z = f(\vec u; \vec x \mode y)\mode z.$$ |
|
161 |
A polynomial $q$ satisfying this condition is called a \textit{threshold} for $f$. |
|
162 |
\end{definition} |
|
163 |
One then has: |
|
164 |
\begin{lemma}[Bounded Minimization, \cite{BellantoniThesis}] |
|
165 |
If $f(\vec u; \vec x,y)$ is a polynomial checking function on $\vec u$ and $q$ is a threshold, then for any $\vec u$ and $\vec x$ we have: |
|
166 |
$$ (\exists y. f(\vec u; \vec x,y)\mbox{ mod } 2=0) \Rightarrow (\exists y. (\size{y}\leq q(\size{\vec{x}})+2) \mbox{ and } f(\vec u; \vec x,y) \mbox{ mod } 2=0) .$$ |
|
167 |
\end{lemma} |
|
168 |
Finally we can state an important lemma about $\mubc$: |
|
169 |
\begin{lemma}[Polychecking Lemma, \cite{BellantoniThesis}] |
|
170 |
Let $\Phi$ be a class of polymax bounded functions. If $f(\vec u; \vec x)$ is in $\mubc(\Phi)$, then $f$ is a polymax bounded function and a polynomial checking function on $\vec u$. |
|
171 |
\end{lemma} |
|
159 | 172 |
|
CSL17/ph-macros.tex (revision 160) | ||
---|---|---|
60 | 60 |
\newcommand{\cand}{\wedge} |
61 | 61 |
\newcommand{\ciff}{\equiv} |
62 | 62 |
|
63 |
\newcommand{\size}[1]{|#1|} %% length of a word |
|
63 |
\newcommand{\size}[1]{|#1|} %% length of a word |
|
64 |
\newcommand{\mode}{\; \underline{\mbox{mod}}\;} %% mod 2^{|x|} |
Formats disponibles : Unified diff