Révision 159 CSL17/preliminaries.tex
preliminaries.tex (revision 159) | ||
---|---|---|
114 | 114 |
%\end{enumerate} |
115 | 115 |
\end{proposition} |
116 | 116 |
|
117 |
\nb{TODO: extend with $\mu$s.} |
|
117 |
%\nb{TODO: extend with $\mu$s.}
|
|
118 | 118 |
|
119 | 119 |
|
120 |
\nb{Remember polymax bounded checking lemma! Quite important. Also need to bear this in mind when adding functions.} |
|
120 |
\nb{Remember polymax bounded checking lemma! Quite important. Also need to bear this in mind when adding functions.} |
|
121 |
|
|
122 |
Now, in order to characterize $\fph$ and its subclasses $\fphi{i}$ we consider Bellantoni's function algebra $\mubc$, defined by using predicative minimization: |
|
123 |
\begin{definition}[$\mubc$ and $\mubc^i$ programs] |
|
124 |
We define: |
|
125 |
\begin{itemize} |
|
126 |
\item The class $\mubc$ is the set of functions defined as the BC functions, but with the following additional generation rule: |
|
127 |
|
|
128 |
8. Predicative minimization. If $h$ is in $\mubc$, then so is $f$ defined by |
|
129 |
|
|
130 |
$f(\vec u; \vec x):= \begin{cases} |
|
131 |
s_1(\mu y.h(\vec u; \vec x, y)\mod 2 = 0)& \mbox{ if there exists such a $y$,} \\ |
|
132 |
& \mbox{ otherwise,} |
|
133 |
\end{cases} |
|
134 |
$ |
|
135 |
|
|
136 |
where $\mu y.h(\vec u; \vec x , y)\mod 2 = 0$ is the least $y$ such that the equality holds. |
|
137 |
|
|
138 |
If $\Phi$ is a class of functions, we denote by $\mubc(\Phi)$ the class obtained as $\mubc$ but adding $\Phi$ to the set of initial functions. |
|
139 |
|
|
140 |
\item For each $i\geq 0$, $\mubc^i$ is the set of $\mubc$ functions obtained by at most $i$ applications of predicative minimization. So $\mubc^0=BC$ and $\mubc =\cup_i \mubc^i$. |
|
141 |
\end{itemize} |
|
142 |
\end{definition} |
|
143 |
One then obtains: |
|
144 |
\begin{theorem}[\cite{BellantoniThesis}] |
|
145 |
The class of functions representable by $\mubc$ programs is $\fph$, and for each $i$ the class representable by $\mubc^i$ programs is $\fphi{i}$. |
|
146 |
\end{theorem} |
|
147 |
We will also need an intermediary lemma, also proved in \cite{BellantoniThesis}. |
|
148 |
\begin{definition} |
|
149 |
A function $f(\vec u; \vec x)$ is \textit{polymax bounded} if there exists a polynomial $q$ such that, |
|
150 |
for any $\vec u$ and $\vec x$ one has: |
|
151 |
|
|
152 |
%$\size{u}$ |
|
153 |
$$ \size{f(\vec u; \vec x)} \leq q(\size{u_1} , \dots , \size{u_k}) + \max_j \size{x_j}.$$ |
|
154 |
\end{definition} |
|
155 |
% \begin{lemma} |
|
156 |
% Let $\Phi$ be a class of polymax bounded functions. If $f$ is in $\mubc(\Phi)$ |
|
157 |
% \end{lemma} |
|
158 |
\nb{polychecking lemma still to be added} |
|
159 |
|
Formats disponibles : Unified diff