Révision 159

CSL17/preliminaries.tex (revision 159)
114 114
	%\end{enumerate}
115 115
\end{proposition}
116 116

  
117
\nb{TODO: extend with $\mu$s.}
117
%\nb{TODO: extend with $\mu$s.}
118 118

  
119 119

  
120
\nb{Remember polymax bounded checking lemma! Quite important. Also need to bear this in mind when adding functions.}
120
\nb{Remember polymax bounded checking lemma! Quite important. Also need to bear this in mind when adding functions.}
121

  
122
Now, in order to characterize $\fph$ and its subclasses $\fphi{i}$ we consider Bellantoni's function algebra $\mubc$, defined by using predicative minimization: 
123
\begin{definition}[$\mubc$ and $\mubc^i$ programs]
124
We define:
125
\begin{itemize}
126
\item The class $\mubc$ is the set of functions defined as the BC functions, but with the following additional generation rule:
127

  
128
8. Predicative minimization. If $h$ is in $\mubc$, then so is $f$ defined by
129

  
130
$f(\vec u; \vec x):= \begin{cases}
131
 s_1(\mu y.h(\vec u; \vec x, y)\mod 2 = 0)& \mbox{ if  there exists such a $y$,} \\
132
 & \mbox{ otherwise,}
133
\end{cases}
134
$
135

  
136
where $\mu y.h(\vec u; \vec x , y)\mod 2 = 0$ is the least $y$ such that the equality holds.
137

  
138
If $\Phi$ is a class of functions, we denote by $\mubc(\Phi)$ the class obtained as $\mubc$ but adding $\Phi$ to the set of initial functions.
139
 
140
\item For each $i\geq 0$, $\mubc^i$ is the set of $\mubc$ functions obtained by at most $i$ applications of predicative minimization. So $\mubc^0=BC$ and $\mubc =\cup_i \mubc^i$.
141
\end{itemize}
142
 \end{definition}
143
 One then obtains:
144
 \begin{theorem}[\cite{BellantoniThesis}]
145
 The class of functions representable by $\mubc$ programs is $\fph$, and for each $i$ the class representable by $\mubc^i$ programs is $\fphi{i}$.
146
 \end{theorem}
147
 We will also need an intermediary lemma, also proved in \cite{BellantoniThesis}.
148
 \begin{definition}
149
  A function $f(\vec u; \vec x)$ is \textit{polymax bounded} if there exists a polynomial $q$ such that,
150
  for any $\vec u$ and $\vec x$ one has:
151

  
152
%$\size{u}$
153
  $$ \size{f(\vec u; \vec x)} \leq q(\size{u_1} , \dots , \size{u_k}) + \max_j \size{x_j}.$$
154
 \end{definition}
155
% \begin{lemma}
156
% Let $\Phi$ be a class of polymax bounded functions. If $f$ is in $\mubc(\Phi)$
157
% \end{lemma}
158
\nb{polychecking lemma still to be added}
159
 
CSL17/ph-macros.tex (revision 159)
39 39
\newcommand{\pv}{\mathit{PV}}
40 40
\newcommand{\pvbci}[1]{\pv^{#1}_{\mathrm{BC}}}
41 41
\newcommand{\mubci}[1]{\mu\mathrm{BC}^{#1}}
42
\newcommand{\mubc}{\mu\mathrm{BC}}
42 43
\newcommand{\bc}{\mathrm{BC}}
43 44

  
44
\newcommand{\fphi}[1]{\Box_{#1}}
45
\newcommand{\fphi}[1]{\Box^p_{#1}}
46
\newcommand{\fph}{\Box^p}
45 47
	\newcommand{\ph}{\mathbf{PH}}
46 48
	\newcommand{\pspace}{\mathbf{PSPACE}}
47 49
	\newcommand{\fpspace}{\mathbf{FPSPACE}}
......
56 58
\newcommand{\cimp}{\supset}
57 59
\newcommand{\cor}{\vee}
58 60
\newcommand{\cand}{\wedge}
59
\newcommand{\ciff}{\equiv}
61
\newcommand{\ciff}{\equiv}
62

  
63
\newcommand{\size}[1]{|#1|}    %% length of a word

Formats disponibles : Unified diff