Statistiques
| Révision :

root / CSL17 / pv-theories.tex @ 157

Historique | Voir | Annoter | Télécharger (14,81 ko)

1
\section{An extension of Bellantoni's theory PV for PH}
2

    
3
PVBC+FCA+ safe induction characterises PH?
4

    
5
We differ slightly from Bellantoni's theory, using  a mismatch of pvbc and qpvbc.
6
This is for simplicity, since 
7

    
8
\subsection{Base theory}
9

    
10
Let us begin with a variation of the base theory of $\pvbci{(0)}$.
11

    
12
\begin{definition}
13
	[Basic theory]
14
	We have two types/sorts: $\normal$ (normal) and $\safe$ (safe).
15
	Our language consists of the following:
16
	\begin{itemize}
17
		\item Normal and safe variables $x^\normal_i , x^\safe_i$. (sometimes write $u$, $x$ , or $\vec u; \vec x$ without superscripts).
18
%		\item Constant symbol $0^\safe$.
19
%		\item Function symbols $\succ{i}^{\safe \to \safe}$, for $i = 0,1$. (Simply written $\succ i^\safe (;x)$.
20
		\item (all initial symbols from BC with their natural typing, plus a recursion scheme. Have the defining axioms too.)
21
		\item The following interrelations between safe and normal terms:
22
		\begin{itemize}
23
			\item For each normal variable $x^\normal$ a safe variable $x^{\normal\safe}$.
24
			\item For each normal function symbol $f^\normal$ a safe function symbol $f^{\normal\safe}$.
25
			\item For each normal term $t = f^\normal (\vec s ; \vec t)$, we define $t^\safe$ as $f^{\normal\safe} (\vec s ; \vec t)$, and if $t$ is $x^\normal$ then $t^\safe$ as $x^{\normal\safe}$.
26
			\item We have the axioms $t^\safe = t$.
27
		\end{itemize}
28
		\item We have function symbols for the characteristic functions of each quantifier-free predicate. I.e.,
29
		\[
30
		f_A (\vec u ; \vec x) = 1
31
		\quad \ciff \quad
32
		A(\vec u ; \vec x)
33
		\]
34
		where $A$ is quantifier-free. (this is just $\wit{}{}$ for q.f.\ formulae.)
35

    
36
		(maybe use $\chi[A]$ for characteristic, to avoid subscripts)
37
		\item Open induction, i.e.\ quantifier-free induction, on normal variables:
38
		\[
39
		\forall \vec u ; \vec x.
40
		(A(0) \cand \forall u^\normal . ( A(u) \cimp  A(\succ 0 u ) \cand \forall u^\normal . ( A(u) \cimp  A(\succ 1 u ) ))
41
		\cimp \forall u^\normal . A( u ))
42
		\]
43
		where $\vec u ; \vec x $ are all the free variables of $A(0)$.
44
	\end{itemize}
45
\end{definition}
46

    
47
The following was essentially proved by Bellantoni in his thesis:
48

    
49
\begin{theorem}
50
	[Bellantoni]
51
	$\pvbci{0}$ proves the totality of just the polynomial-time functions.
52
\end{theorem}
53

    
54
\nb{Notice that induction can be assumed to be simply functional, due to comprehension function symbols. This is more in the spirit of, say, 2nd order subsystems of arithmetic, like in reverse mathematics.}
55

    
56
\anupam{Hold on, the above should be fairly immediate, the interesting result is for $\pvbci 1$, which we should perhaps state later.}
57

    
58
\subsection{Extensions to theories for the polynomial hierarchy}
59

    
60
We now will associate a rank to new function symbols based on the complexity of formulae they characterise.
61

    
62
\anupam{Ranks are necessary since we do not have sharply bounded quantifiers to reason about sequences. Check what Krajicek does, probably has the latter.}
63

    
64
\begin{definition}
65
[Quantifier hierarchy and functional comprehension]
66
We mutually define the \emph{safe arithmetical hierarchy} and functions of rank $i$ as follows:
67
	\begin{itemize}
68
		\item All functions from the basic theory have \emph{rank} 0.
69
		\item $\Sigma^\safe_0 = \Pi^\safe_0$ is the set of quantifier-free formulae with just functions symbols of rank $0$.
70
		\item The functions symbols of rank $i$ are the characteristic functions of $\Sigma^\safe_i$ formulae.
71
		\item $\Sigma^\safe_{i+1}$ is the least class containing:
72
		\begin{itemize}
73
			\item $\Pi^\safe_i$.
74
			\item Atomic formulae $s=t$ where $s$ and $t$ contain only function symbols of rank $\leq i+1$.
75
			\item Closed under $\cor , \cand , \exists^\safe$.
76
		\end{itemize}
77
		\item $\Pi^\safe_{i+1} $ is...
78
	\end{itemize}
79
\end{definition}
80

    
81
\anupam{check the parameters/subscripts above! Aim for:
82
	
83
	rank = $\mu$ nesting = quant alt = level - 1
84
	}
85

    
86

    
87
Over the next two sections we will show that the provably total functions of $\pvbci i+1$ are just 
88

    
89
\subsection{Soundness}
90
We show that provably total functions of $\pvbci i$ are in $\fphi i$.
91

    
92
The following is our main result:
93
\begin{theorem}
94
	If $\pvbci {i+1} \proves \forall \vec u^\normal , \vec x^\sigma . \exists \vec y^\sigma. A(\vec u , \vec x , \vec y)$, then there are rank $i $ functions $\vec f (\vec u ; \vec x)$ such that $\pvbci {i+1} \proves\forall \vec u^\normal , \vec x^\sigma . A(\vec u , \vec x , \vec f (\vec u ; \vec x) )  $.
95
\end{theorem}
96

    
97
\begin{corollary}
98
The provably total functions of $\pvbci i+1$ are in $\fphi i$.
99
\end{corollary}
100

    
101
\begin{definition}
102
	[Witness predicate]
103
	The \emph{witness predicate} is a $\mubci{}$ program $\wit{\vec a}{A}$, parametrised by variables $\vec a$ and a formula $A$ whose free variables are amongst $\vec a$, defined as follows.
104
	If $A$ is a $\Pi_{i}$ formula then:
105
	\[
106
	\begin{array}{rcl}
107
	\wit{\vec u; \vec x}{s=t} (\vec u ; \vec x, w) & \dfn & =(;s,t) \\
108
	\smallskip
109
	\wit{\vec u; \vec x}{s\neq t} (\vec u ; \vec x, w) & \dfn & \neg (;=(;s,t)) \\
110
	\smallskip
111
	\wit{\vec u ; \vec x}{A\cor B} (\vec u ; \vec x , w) & \dfn & \cor (; \wit{\vec u , \vec x}{A} (\vec u ; \vec x , w), \wit{\vec u , \vec x}{B} (\vec u ;\vec x, w) ) \\
112
	\smallskip
113
	\wit{\vec u ; \vec x}{A\cand B} (\vec u ; \vec x , w) & \dfn & \cand(; \wit{\vec u , \vec x}{A} (\vec u ; \vec x , w), \wit{\vec u , \vec x}{B} (\vec u ;\vec x, w) ) \\
114
	\smallskip
115
	\wit{\vec u ; \vec x}{\exists x^\safe . A(x)} (\vec u ;\vec x,  w) & \dfn & \begin{cases}
116
	1 & \exists x^\safe . \wit{\vec u; \vec x, x }{A(x)} (\vec u ;\vec x , x, w) = 1 \\
117
	0 & \text{otherwise} 
118
	\end{cases} \\
119
	\smallskip
120
	\wit{\vec u; \vec x}{\forall x^\safe . A(x)} (\vec u ;\vec x , w) & \dfn & 
121
	\begin{cases}
122
	0 & \exists x^\sigma. \wit{\vec u ; \vec x , x}{ A(x)} (\vec u; \vec x , x) = 0 \\
123
	1 & \text{otherwise}
124
	\end{cases}
125
	\end{array}
126
	\]
127
	We now define $\Wit{\vec a}{A}$ for a $\Sigma_{i+1}$-formula $A$ with free variables amongst $\vec a$.
128
	\[
129
	\begin{array}{rcl}
130
	\Wit{\vec u ; \vec x}{A} (\vec u ; \vec x , w) & \dfn & \wit{\vec u ; \vec x}{A} (\vec u ; \vec x)  \text{ if $A$ is $\Pi_i$} \\
131
	\smallskip
132
	\Wit{\vec u ; \vec x}{A \cor B} (\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cor ( ; \Wit{\vec u ; \vec x}{A} (\vec u ; \vec x , \vec w^A) ,\Wit{\vec u ; \vec x}{B} (\vec u ; \vec x , \vec w^B)  )  \\
133
	\smallskip
134
	\Wit{\vec u ; \vec x}{A \cand B} (\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cand ( ; \Wit{\vec u ; \vec x}{A} (\vec u ; \vec x , \vec w^A) ,\Wit{\vec u ; \vec x}{B} (\vec u ; \vec x , \vec w^B)  )  \\
135
	\smallskip
136
	\Wit{\vec u ; \vec x}{\exists x^\safe . A(x)} (\vec u ; \vec x , \vec w , w) & \dfn & \Wit{\vec u ; \vec x , x}{A(x)} ( \vec u ; \vec x , w , \vec w )
137
	\end{array}
138
	\]
139
	
140
	
141
\end{definition}
142

    
143
\nb{use (de)pairing to make sure only $i$ $\mu$s are used to express a $\Pi_i$ predicate.}
144

    
145
\begin{proposition}
146
	For $\Sigma_{i+1}$ formulae $A$, $\Wit{\vec u ; \vec x}{A}$ is a $\mubci{i} $ program.
147
\end{proposition}
148

    
149
\nb{In fact, need that $\wit{}{}$ is $\mubci{i}$ and $\Wit{}{}$ and the witness functions $\vec f$ are $\bc (\wit{}{})$}
150

    
151
Before proving the main theorem, we will need the following `witnessing lemma':
152

    
153
\begin{lemma}
154
	If $\pvbci{i+1} $ proves a $\Sigma^\safe_{i+1}$-sequent $\Gamma \seqar \Delta$ with free variables $\vec u^\normal , \vec x^\safe$ then there are $\mubci {i}$ functions $\vec f$ such that 
155
	\[
156
	\pvbci {i+1} \proves \Wit{\vec u , \vec x}{\bigwedge \Gamma} (\vec u ; \vec x , \vec w) \cimp \Wit{\vec u  , \vec x}{\bigvee \Delta } (\vec u ; \vec x, \vec f (\vec u ; \vec x , \vec w) )
157
	\]
158
	(we simply write $\Wit{\vec u ; \vec x}{A}(\vec u ; \vec x , \vec w)$, instead of $\Wit{\vec u ; \vec x}{A}(\vec u ; \vec x , \vec w) =1 $.
159
\end{lemma}
160
\begin{proof}
161
	By induction on the size of a $\pvbci{i+1} $ proof. 
162
	Interesting steps below:
163
	\begin{itemize}
164
		\item $\neg$-right. (Can assume only applies to atomic formulae, and so no effect.)
165
		\item $\exists$-right.
166
		\[
167
		\dfrac{\Gamma \seqar \Delta , A(t^\safe )}{ \Gamma \seqar \Delta, \exists x^\safe . A(x) }
168
		\]
169
		By the inductive hypothesis, have functions $\vec f(\vec u ; \vec x), \vec g (\vec u ; \vec x)$ such that,
170
		\[
171
		\pvbci{i+1} \proves 
172
		\Wit{\vec u ; \vec x}{\bigwedge \Gamma } (\vec u ; \vec x , \vec w)
173
		\cimp
174
		\left(
175
		\Wit{\vec u ; \vec x}{\bigvee \Delta} (\vec u ; \vec x , \vec f (\vec u ; \vec x , \vec w) )
176
		\cor
177
		\Wit{\vec u ; \vec x}{A(t)} (\vec u ; \vec x , \vec g (\vec u ; \vec x , \vec w))
178
		\right)
179
		\]
180
		(just use $t$ as one of the witness functions)
181
		\item $\forall$-right. (Must be a $\Pi_i$ formula, so forget witness and compute $\wit{}{}$)
182
		\item Contraction-right:
183
		\[
184
		\dfrac{\Gamma  \seqar \Delta , A ,A}{\Gamma \seqar \Delta, A}
185
		\]
186
		By infuctive hypothesis have functions $\vec f, \vec g^1 , \vec g^2$ such that:
187
		\[
188
		todo
189
		\]
190
		(just use conditional with a call to $\Wit{}{}$)
191
		\item induction
192
		\[
193
		\dfrac{\{\Gamma , A(a) \seqar A(s_i a) , \Delta\}_{i=0,1} }{\Gamma, A(0) \seqar A(t) , \Delta}
194
		\]
195
	\end{itemize}
196
\end{proof}
197

    
198
\subsection{Completeness}
199
Here we show that every $\mubci{i}$ function is definable in $\pvbci {i+1}$:
200

    
201
\begin{theorem}
202
	Every $\mubci i$ function is definable in $\pvbci {i+1}$.
203
\end{theorem}
204

    
205
\anupam{This should be simple, right?}
206

    
207
\nb{WoP known as `minimization' principles in bounded arithmetic}
208
\begin{theorem}
209
	[Well ordering property]
210
	\[
211
	\pvbci{i+1} \proves \exists x^\safe . A(x) \cimp \exists  x^\safe . (A(x) \cand \forall y^\safe . (A(y) \cimp x \leq y ) )
212
	\]
213
\end{theorem}
214
\begin{proof}
215
	We work in $\pvbci{i+1}$ and show the contrapositive. 
216
	Suppose:
217
	\begin{equation}
218
	\label{eqn:no-least}
219
	\forall x^\safe. (A(x) \cimp \exists y^\safe . A(y) \cand y<x )
220
	\end{equation}
221
	We show that,
222
	\begin{equation}
223
	\label{eqn:ih-wop}
224
	\forall x. \forall y \leq a - x. (\cnot A(y) \cimp \cnot A(y + x))
225
	\end{equation}
226
	by polynomial induction on $x$.
227
	
228
	Let $B(x)$ be such that \eqref{eqn:ih-wop} is $\forall x . B(x)$.
229
	\nb{If $A \in \Sigma^\safe_i \cup \Pi^\safe_i$ then $B \in \Pi^\safe_{i+1}$.}
230
	
231
	When $x=0$, notice that \eqref{eqn:ih-wop} is just a generalised identity.
232
	
233
	Suppose that $B(x)$ and let us show that $B(2x)$.
234
	Let $y \leq a - 2x$ such that $\cnot A(y)$. 
235
	Then $y\leq a-x$ so by $B(x)$ we have that $\cnot A(y+x)$.
236
	We also have that $y+x \leq a-x$ so by $B(x)$ we have that $\cnot A(y+2x)$, as required.
237
	
238
	Now suppose that $B(x)$ and let us show that $B(2x+1)$.
239
	Let $y \leq a - 2x - 1$ such that $\cnot A(y)$.
240
	By similar reasoning to the $2x$ case, we have that $\cnot A(y + 2x )$.
241
\end{proof}
242

    
243

    
244
\begin{theorem}
245
	
246
\end{theorem}
247

    
248

    
249
\subsection{What we want for WoP}
250
From bounded arithmetic:
251

    
252
$\Sigma_{i+1}$-LMIN $ \iff$ $\Sigma_{i+1}$-PIND $\implies$ $\Sigma_i$-IND $\iff$ $\Sigma_i$-MIN $ \iff$ $\Pi_{i+1}$-MIN.
253

    
254
\subsection{Completeness proof idea}
255
For each $\mubci i$ function $f(\vec u ; \vec x)$ we $\Sigma_i$-define a formula $A_f (\vec u ; \vec x  , y )$ in $\pvbci{i+1}$ such that:
256
\[
257
\proves A_f (\vec u ; \vec x , y)
258
\quad 
259
\iff
260
\quad
261
f(\vec u ; \vec x) = y
262
\]
263
and $A_f$ is provably total in $\pvbci{i+1}$.
264

    
265
For the $\mu$ case, say we have the function:
266
\[
267
\mu x^{+1} . f(\vec u ; \vec x , x) =_2 0
268
\]
269
Let $A_f (\vec u ; \vec x , y)$ be given by the inductive hypothesis.
270
We define $A(\vec u ; \vec x , z)$ as:
271
\[
272
\begin{array}{rl}
273
&\left(
274
z=0 \  \cand \ \forall x^\safe , y^\safe . (A_f (\vec u ; \vec x , x, y) \cimp y=_2 1)
275
\right) \\
276
\cor & \left(
277
\begin{array}{ll}
278
z\neq 0 
279
& \cand\   \forall y^\safe . (A_f (\vec u ; \vec x , z , y) \cimp y=_2 0 ) \\
280
& \cand\ \forall x^\safe < p(;z) . (\forall y^\safe . A_f (\vec u ; \vec x , x , y) \cimp y=_2 1) 
281
\end{array}
282
\right)
283
\end{array}
284
\]
285
Notice that $A$ is $\Pi_k$, since $A_f$ is $\Sigma_k$.
286

    
287

    
288

    
289
What about, say recursion on a formula? Need a form of `ranked comprehension'?
290
E.g., when $A$ is $\Sigma_k$ then we can introduce a rank $k$ symbol (a sort?) such that:
291
\[
292
\forall \vec u^\normal, \vec x^\safe . \exists ! y^\safe . A(\vec u ; \vec x , y)
293
\implies
294
\exists f^\safe_r . \forall \vec u^\normal,\vec x^\safe, y^\safe . (A(\vec u ; \vec x, y) \ciff f^\safe_r (\vec u ; \vec x) = y )
295
\]
296

    
297
Otherwise, can we use definability of computations? E.g., if:
298
\[
299
\begin{array}{rcl}
300
f(0, \vec u ; \vec x ) & \dfn & g(\vec u ; \vec x) \\
301
f(s_i u , \vec u ; \vec x) & \dfn & h_i (u , \vec u ; \vec x , f(u,\vec u ; \vec x))
302
\end{array}
303
\]
304
Suppose we have $A_g (\vec u ; \vec x,y)$ and $A_i (u , \vec u ; \vec x , y , z)$ defining $g$ and $h_i$ respectively.
305
We define $A_f (u ,\vec u ; \vec x , y)$ as:
306
\[
307
\exists z^\safe . \left(
308
\begin{array}{ll}
309
& Seq(z) \cand \exists y_0 . ( A_g (\vec u ; \vec x , y_0) \cand \beta_0 (z , y_0) ) \cand \beta_{|u|} ( z,y ) \\
310
\cand & \forall k < |u| . \exists y_k , y_{k+1} . ( \beta_k (z, y_i) \cand \beta_{k+1} (z, y_{k+1})  \cand A_i (u , \vec u ; \vec x , y_k , y_{k+1}) )
311
\end{array}
312
\right)
313
\]
314

    
315
(Can we really assume $z$ is safe here?)
316

    
317

    
318
POINT: for whatever formulation, we need to prove:
319
\[
320
\exists y^\safe . A_f (a , \vec u ; \vec x , y) 
321
\quad \seqar \quad
322
\exists y^\safe . A_f (s_i a, \vec u ; \vec x , y)
323
\]
324

    
325
SHOULD HAVE: $\beta (i;x)$ for $i$th element of sequence $x$. 
326
Therefore need 'sharply bounded' quantification for normal variables?
327

    
328
In fact, why not $\beta(;i,x) $? Should be fine. So only safe quantification is needed for PH, but lose level-by-level delineation.
329

    
330
GOALS:
331
\begin{enumerate}
332
	\item PVBC + FCA + $\safe$-IND characterises PH. (Recursion included in PVBC)
333
	\item Refinement of above with `ranks' to delineate levels (definitions of $\pvbci{i}$).
334
	\item Arithmetic including both safe and sharply bounded normal quantification. (for sequences)
335
	\item (if time) allow both bounded and safe quantifiers?
336
\end{enumerate}
337

    
338

    
339

    
340
FCA:
341
\[
342
\exists f^\safe . \forall \vec u ; \vec x .
343
\left(
344
\exists y^\safe . A(\vec u ; \vec x , y) \ciff A(\vec u ; \vec x , f^\safe(\vec u ; \vec x))
345
\right)
346
\]
347
(with typing information)
348
This could be enough with open induction if we introduce ranks later? Yup, seems like a good idea. Can then make into a real `open' theory.
349

    
350
\subsection{Delineating levels using function ranks}
351

    
352

    
353
\subsection{A second-order theory}
354
From here we can rather simply define a theory complete for PH.
355
However, delineating the levels is a little cumbersome, due to the formal necessity of infinitely many ranks.
356

    
357
\begin{definition}
358
	[Axioms]
359
	The \emph{functional comprehension} schema is the following:
360
	\[
361
	\exists f . \forall \vec u; \vec x . ( \exists y^\safe . A(\vec u ; \vec x , y) \ciff A(\vec u ; \vec x , f(\vec u ; \vec x) )
362
	\]
363
	(can parametrise by which $A$ permitted)
364
	
365
	The \emph{recursion} schema is:
366
	\[
367
	\forall g , h_0 , h_1 . \exists f . \forall u , \vec u ; \vec x .
368
	\left(
369
	\begin{array}{rl}
370
	& f(0 , \vec u ; \vec x) = g(\vec u ; \vec x) \\
371
	\cand & f(\succ 0 u , \vec u ; \vec x) = h_0 (u , \vec u ; \vec x , f(u , \vec u ; \vec x)) \\
372
	\cand & f(\succ 1 u , \vec u ; \vec x) = h_1 (u , \vec u ; \vec x , f(u , \vec u ; \vec x)) 
373
	\end{array}
374
	\right)
375
	\]
376
	(should be well typed. Cannot avoid due to sequentiality problem.)
377
	\end{definition}
378
	
379
	\anupam{Original PV has explicit recursion symbols. Also, Krajicek's PVi has explicit symbols for the characteristic functions of each $\Sigma^b_i$ predicate.}
380