Révision 157 CSL17/pv-theories.tex

pv-theories.tex (revision 157)
1 1
\section{An extension of Bellantoni's theory PV for PH}
2 2

  
3
PVBC+FCA+ safe induction characterises PHcd
3
PVBC+FCA+ safe induction characterises PH?
4 4

  
5
We differ slightly from Bellantoni's theory, using  a mismatch of pvbc and qpvbc.
6
This is for simplicity, since 
7

  
8
\subsection{Base theory}
9

  
10
Let us begin with a variation of the base theory of $\pvbci{(0)}$.
11

  
5 12
\begin{definition}
6
[Axioms]
7
The \emph{functional comprehension} schema is the following:
8
\[
9
\exists f . \forall \vec u; \vec x . ( \exists y^\safe . A(\vec u ; \vec x , y) \ciff A(\vec u ; \vec x , f(\vec u ; \vec x) )
10
\]
11
(can parametrise by which $A$ permitted)
13
	[Basic theory]
14
	We have two types/sorts: $\normal$ (normal) and $\safe$ (safe).
15
	Our language consists of the following:
16
	\begin{itemize}
17
		\item Normal and safe variables $x^\normal_i , x^\safe_i$. (sometimes write $u$, $x$ , or $\vec u; \vec x$ without superscripts).
18
%		\item Constant symbol $0^\safe$.
19
%		\item Function symbols $\succ{i}^{\safe \to \safe}$, for $i = 0,1$. (Simply written $\succ i^\safe (;x)$.
20
		\item (all initial symbols from BC with their natural typing, plus a recursion scheme. Have the defining axioms too.)
21
		\item The following interrelations between safe and normal terms:
22
		\begin{itemize}
23
			\item For each normal variable $x^\normal$ a safe variable $x^{\normal\safe}$.
24
			\item For each normal function symbol $f^\normal$ a safe function symbol $f^{\normal\safe}$.
25
			\item For each normal term $t = f^\normal (\vec s ; \vec t)$, we define $t^\safe$ as $f^{\normal\safe} (\vec s ; \vec t)$, and if $t$ is $x^\normal$ then $t^\safe$ as $x^{\normal\safe}$.
26
			\item We have the axioms $t^\safe = t$.
27
		\end{itemize}
28
		\item We have function symbols for the characteristic functions of each quantifier-free predicate. I.e.,
29
		\[
30
		f_A (\vec u ; \vec x) = 1
31
		\quad \ciff \quad
32
		A(\vec u ; \vec x)
33
		\]
34
		where $A$ is quantifier-free. (this is just $\wit{}{}$ for q.f.\ formulae.)
12 35

  
13
The \emph{recursion} schema is:
14
\[
15
\forall g , h_0 , h_1 . \exists f . \forall u , \vec u ; \vec x .
16
\left(
17
\begin{array}{rl}
18
& f(0 , \vec u ; \vec x) = g(\vec u ; \vec x) \\
19
\cand & f(\succ 0 u , \vec u ; \vec x) = h_0 (u , \vec u ; \vec x , f(u , \vec u ; \vec x)) \\
20
\cand & f(\succ 1 u , \vec u ; \vec x) = h_1 (u , \vec u ; \vec x , f(u , \vec u ; \vec x)) 
21
\end{array}
22
\right)
23
\]
24
(should be well typed. Cannot avoid due to sequentiality problem.)
36
		(maybe use $\chi[A]$ for characteristic, to avoid subscripts)
37
		\item Open induction, i.e.\ quantifier-free induction, on normal variables:
38
		\[
39
		\forall \vec u ; \vec x.
40
		(A(0) \cand \forall u^\normal . ( A(u) \cimp  A(\succ 0 u ) \cand \forall u^\normal . ( A(u) \cimp  A(\succ 1 u ) ))
41
		\cimp \forall u^\normal . A( u ))
42
		\]
43
		where $\vec u ; \vec x $ are all the free variables of $A(0)$.
44
	\end{itemize}
25 45
\end{definition}
26 46

  
27
\anupam{Original PV has explicit recursion symbols. Also, Krajicek's PVi has explicit symbols for the characteristic functions of each $\Sigma^b_i$ predicate.}
47
The following was essentially proved by Bellantoni in his thesis:
28 48

  
49
\begin{theorem}
50
	[Bellantoni]
51
	$\pvbci{0}$ proves the totality of just the polynomial-time functions.
52
\end{theorem}
53

  
54
\nb{Notice that induction can be assumed to be simply functional, due to comprehension function symbols. This is more in the spirit of, say, 2nd order subsystems of arithmetic, like in reverse mathematics.}
55

  
56
\anupam{Hold on, the above should be fairly immediate, the interesting result is for $\pvbci 1$, which we should perhaps state later.}
57

  
58
\subsection{Extensions to theories for the polynomial hierarchy}
59

  
60
We now will associate a rank to new function symbols based on the complexity of formulae they characterise.
61

  
62
\anupam{Ranks are necessary since we do not have sharply bounded quantifiers to reason about sequences. Check what Krajicek does, probably has the latter.}
63

  
64
\begin{definition}
65
[Quantifier hierarchy and functional comprehension]
66
We mutually define the \emph{safe arithmetical hierarchy} and functions of rank $i$ as follows:
67
	\begin{itemize}
68
		\item All functions from the basic theory have \emph{rank} 0.
69
		\item $\Sigma^\safe_0 = \Pi^\safe_0$ is the set of quantifier-free formulae with just functions symbols of rank $0$.
70
		\item The functions symbols of rank $i$ are the characteristic functions of $\Sigma^\safe_i$ formulae.
71
		\item $\Sigma^\safe_{i+1}$ is the least class containing:
72
		\begin{itemize}
73
			\item $\Pi^\safe_i$.
74
			\item Atomic formulae $s=t$ where $s$ and $t$ contain only function symbols of rank $\leq i+1$.
75
			\item Closed under $\cor , \cand , \exists^\safe$.
76
		\end{itemize}
77
		\item $\Pi^\safe_{i+1} $ is...
78
	\end{itemize}
79
\end{definition}
80

  
81
\anupam{check the parameters/subscripts above! Aim for:
82
	
83
	rank = $\mu$ nesting = quant alt = level - 1
84
	}
85

  
86

  
87
Over the next two sections we will show that the provably total functions of $\pvbci i+1$ are just 
88

  
29 89
\subsection{Soundness}
30 90
We show that provably total functions of $\pvbci i$ are in $\fphi i$.
31 91

  
32 92
The following is our main result:
33 93
\begin{theorem}
34
	If $\pvbci i \proves \forall \vec u^\normal , \vec x^\sigma . \exists \vec y^\sigma. A(\vec u , \vec x , \vec y)$, then there are $\mubci i $ programs $\vec f (\vec u ; \vec x)$ such that $\pvbci i \proves\forall \vec u^\normal , \vec x^\sigma . A(\vec u , \vec x , \vec f (\vec u ; \vec x) )  $.
94
	If $\pvbci {i+1} \proves \forall \vec u^\normal , \vec x^\sigma . \exists \vec y^\sigma. A(\vec u , \vec x , \vec y)$, then there are rank $i $ functions $\vec f (\vec u ; \vec x)$ such that $\pvbci {i+1} \proves\forall \vec u^\normal , \vec x^\sigma . A(\vec u , \vec x , \vec f (\vec u ; \vec x) )  $.
35 95
\end{theorem}
36 96

  
97
\begin{corollary}
98
The provably total functions of $\pvbci i+1$ are in $\fphi i$.
99
\end{corollary}
100

  
37 101
\begin{definition}
38 102
	[Witness predicate]
39 103
	The \emph{witness predicate} is a $\mubci{}$ program $\wit{\vec a}{A}$, parametrised by variables $\vec a$ and a formula $A$ whose free variables are amongst $\vec a$, defined as follows.
......
132 196
\end{proof}
133 197

  
134 198
\subsection{Completeness}
135
Here we show that every $\mubci{i}$ function is definable in $\pvbci {i+1}$.
199
Here we show that every $\mubci{i}$ function is definable in $\pvbci {i+1}$:
136 200

  
201
\begin{theorem}
202
	Every $\mubci i$ function is definable in $\pvbci {i+1}$.
203
\end{theorem}
137 204

  
205
\anupam{This should be simple, right?}
206

  
138 207
\nb{WoP known as `minimization' principles in bounded arithmetic}
139 208
\begin{theorem}
140 209
	[Well ordering property]
......
172 241
\end{proof}
173 242

  
174 243

  
244
\begin{theorem}
245
	
246
\end{theorem}
247

  
248

  
175 249
\subsection{What we want for WoP}
176 250
From bounded arithmetic:
177 251

  
......
273 347
(with typing information)
274 348
This could be enough with open induction if we introduce ranks later? Yup, seems like a good idea. Can then make into a real `open' theory.
275 349

  
276
\subsection{Delineating levels using function ranks}
350
\subsection{Delineating levels using function ranks}
351

  
352

  
353
\subsection{A second-order theory}
354
From here we can rather simply define a theory complete for PH.
355
However, delineating the levels is a little cumbersome, due to the formal necessity of infinitely many ranks.
356

  
357
\begin{definition}
358
	[Axioms]
359
	The \emph{functional comprehension} schema is the following:
360
	\[
361
	\exists f . \forall \vec u; \vec x . ( \exists y^\safe . A(\vec u ; \vec x , y) \ciff A(\vec u ; \vec x , f(\vec u ; \vec x) )
362
	\]
363
	(can parametrise by which $A$ permitted)
364
	
365
	The \emph{recursion} schema is:
366
	\[
367
	\forall g , h_0 , h_1 . \exists f . \forall u , \vec u ; \vec x .
368
	\left(
369
	\begin{array}{rl}
370
	& f(0 , \vec u ; \vec x) = g(\vec u ; \vec x) \\
371
	\cand & f(\succ 0 u , \vec u ; \vec x) = h_0 (u , \vec u ; \vec x , f(u , \vec u ; \vec x)) \\
372
	\cand & f(\succ 1 u , \vec u ; \vec x) = h_1 (u , \vec u ; \vec x , f(u , \vec u ; \vec x)) 
373
	\end{array}
374
	\right)
375
	\]
376
	(should be well typed. Cannot avoid due to sequentiality problem.)
377
	\end{definition}
378
	
379
	\anupam{Original PV has explicit recursion symbols. Also, Krajicek's PVi has explicit symbols for the characteristic functions of each $\Sigma^b_i$ predicate.}
380

  

Formats disponibles : Unified diff