Révision 157 CSL17/arithmetic.tex

arithmetic.tex (revision 157)
1 1
\section{A two-sorted arithmetic for the polynomial hierarchy}
2 2

  
3
(Here use a variation of S12 with sharply bounded quantifiers and safe quantifiers)
3
(Here use a variation of S12 with sharply bounded quantifiers and safe quantifiers)
4

  
5
Use base theory + sharply bounded quantifiers.
6

  
7
\anupam{Perhaps use prefix quantifier instead of sharply bounded (a la Ignatovic?), since plays nicer with sharply bounded lemma?}
8

  
9
\begin{definition}
10
[Quantifier hierarchy]
11
We define:
12
\begin{itemize}
13
	\item $\Sigma^\safe_0 = \Pi^\safe_0 $ = sharply bounded formulae. 
14
	\item (Increase with predicative quantifiers)
15
\end{itemize}	
16
\end{definition}
17

  
18
\begin{definition}
19
Define the theory $\arith^i$ as $\basic + \cpind{\Sigma^\safe_i }$	
20
\end{definition}
21

  
22

  
23
\begin{lemma}
24
[Sharply bounded lemma]
25
Let $f_A$ be the characteristic function of a predicate $A(u , \vec u ; \vec x)$.
26
Then the characteristic functions of $\forall u \prefix v . A(u,\vec u ; \vec x)$ and $\exists u \prefix v . A(u , \vec u ; \vec x)$ are in $\bc(f_A)$.
27
\end{lemma}
28
\begin{proof}
29
	We give the $\forall$ case, the $\exists$ case being dual.
30
	The characteristic function $f(v , \vec u ; \vec x)$ is defined by predicative recursion on $v$ as:
31
	\[
32
	\begin{array}{rcl}
33
	f(0, \vec u ; \vec x) & \dfn & f_A (0 , \vec u ; \vec x) \\
34
	f(\succ i v , \vec u ; \vec x) & \dfn & \cond ( ; f_A (\succ i v, \vec u ; \vec x) , 0 , f(v , \vec u ; \vec x) )
35
	\end{array}
36
	\]
37
\end{proof}
38

  
39
Notice that $\prefix$ suffices to encode usual sharply bounded inequalities,
40
since $\forall u \leq |t| . A(u , \vec u ; \vec x) \ciff \forall u \prefix t . A(|u|, \vec u ; \vec x)$.

Formats disponibles : Unified diff