Révision 157 CSL17/arithmetic.tex
arithmetic.tex (revision 157) | ||
---|---|---|
1 | 1 |
\section{A two-sorted arithmetic for the polynomial hierarchy} |
2 | 2 |
|
3 |
(Here use a variation of S12 with sharply bounded quantifiers and safe quantifiers) |
|
3 |
(Here use a variation of S12 with sharply bounded quantifiers and safe quantifiers) |
|
4 |
|
|
5 |
Use base theory + sharply bounded quantifiers. |
|
6 |
|
|
7 |
\anupam{Perhaps use prefix quantifier instead of sharply bounded (a la Ignatovic?), since plays nicer with sharply bounded lemma?} |
|
8 |
|
|
9 |
\begin{definition} |
|
10 |
[Quantifier hierarchy] |
|
11 |
We define: |
|
12 |
\begin{itemize} |
|
13 |
\item $\Sigma^\safe_0 = \Pi^\safe_0 $ = sharply bounded formulae. |
|
14 |
\item (Increase with predicative quantifiers) |
|
15 |
\end{itemize} |
|
16 |
\end{definition} |
|
17 |
|
|
18 |
\begin{definition} |
|
19 |
Define the theory $\arith^i$ as $\basic + \cpind{\Sigma^\safe_i }$ |
|
20 |
\end{definition} |
|
21 |
|
|
22 |
|
|
23 |
\begin{lemma} |
|
24 |
[Sharply bounded lemma] |
|
25 |
Let $f_A$ be the characteristic function of a predicate $A(u , \vec u ; \vec x)$. |
|
26 |
Then the characteristic functions of $\forall u \prefix v . A(u,\vec u ; \vec x)$ and $\exists u \prefix v . A(u , \vec u ; \vec x)$ are in $\bc(f_A)$. |
|
27 |
\end{lemma} |
|
28 |
\begin{proof} |
|
29 |
We give the $\forall$ case, the $\exists$ case being dual. |
|
30 |
The characteristic function $f(v , \vec u ; \vec x)$ is defined by predicative recursion on $v$ as: |
|
31 |
\[ |
|
32 |
\begin{array}{rcl} |
|
33 |
f(0, \vec u ; \vec x) & \dfn & f_A (0 , \vec u ; \vec x) \\ |
|
34 |
f(\succ i v , \vec u ; \vec x) & \dfn & \cond ( ; f_A (\succ i v, \vec u ; \vec x) , 0 , f(v , \vec u ; \vec x) ) |
|
35 |
\end{array} |
|
36 |
\] |
|
37 |
\end{proof} |
|
38 |
|
|
39 |
Notice that $\prefix$ suffices to encode usual sharply bounded inequalities, |
|
40 |
since $\forall u \leq |t| . A(u , \vec u ; \vec x) \ciff \forall u \prefix t . A(|u|, \vec u ; \vec x)$. |
Formats disponibles : Unified diff