Statistiques
| Révision :

root / CSL17 / pv-theories.tex @ 156

Historique | Voir | Annoter | Télécharger (10,55 ko)

1
\section{An extension of Bellantoni's theory PV for PH}
2

    
3
PVBC+FCA+ safe induction characterises PHcd
4

    
5
\begin{definition}
6
[Axioms]
7
The \emph{functional comprehension} schema is the following:
8
\[
9
\exists f . \forall \vec u; \vec x . ( \exists y^\safe . A(\vec u ; \vec x , y) \ciff A(\vec u ; \vec x , f(\vec u ; \vec x) )
10
\]
11
(can parametrise by which $A$ permitted)
12

    
13
The \emph{recursion} schema is:
14
\[
15
\forall g , h_0 , h_1 . \exists f . \forall u , \vec u ; \vec x .
16
\left(
17
\begin{array}{rl}
18
& f(0 , \vec u ; \vec x) = g(\vec u ; \vec x) \\
19
\cand & f(\succ 0 u , \vec u ; \vec x) = h_0 (u , \vec u ; \vec x , f(u , \vec u ; \vec x)) \\
20
\cand & f(\succ 1 u , \vec u ; \vec x) = h_1 (u , \vec u ; \vec x , f(u , \vec u ; \vec x)) 
21
\end{array}
22
\right)
23
\]
24
(should be well typed. Cannot avoid due to sequentiality problem.)
25
\end{definition}
26

    
27
\anupam{Original PV has explicit recursion symbols. Also, Krajicek's PVi has explicit symbols for the characteristic functions of each $\Sigma^b_i$ predicate.}
28

    
29
\subsection{Soundness}
30
We show that provably total functions of $\pvbci i$ are in $\fphi i$.
31

    
32
The following is our main result:
33
\begin{theorem}
34
	If $\pvbci i \proves \forall \vec u^\normal , \vec x^\sigma . \exists \vec y^\sigma. A(\vec u , \vec x , \vec y)$, then there are $\mubci i $ programs $\vec f (\vec u ; \vec x)$ such that $\pvbci i \proves\forall \vec u^\normal , \vec x^\sigma . A(\vec u , \vec x , \vec f (\vec u ; \vec x) )  $.
35
\end{theorem}
36

    
37
\begin{definition}
38
	[Witness predicate]
39
	The \emph{witness predicate} is a $\mubci{}$ program $\wit{\vec a}{A}$, parametrised by variables $\vec a$ and a formula $A$ whose free variables are amongst $\vec a$, defined as follows.
40
	If $A$ is a $\Pi_{i}$ formula then:
41
	\[
42
	\begin{array}{rcl}
43
	\wit{\vec u; \vec x}{s=t} (\vec u ; \vec x, w) & \dfn & =(;s,t) \\
44
	\smallskip
45
	\wit{\vec u; \vec x}{s\neq t} (\vec u ; \vec x, w) & \dfn & \neg (;=(;s,t)) \\
46
	\smallskip
47
	\wit{\vec u ; \vec x}{A\cor B} (\vec u ; \vec x , w) & \dfn & \cor (; \wit{\vec u , \vec x}{A} (\vec u ; \vec x , w), \wit{\vec u , \vec x}{B} (\vec u ;\vec x, w) ) \\
48
	\smallskip
49
	\wit{\vec u ; \vec x}{A\cand B} (\vec u ; \vec x , w) & \dfn & \cand(; \wit{\vec u , \vec x}{A} (\vec u ; \vec x , w), \wit{\vec u , \vec x}{B} (\vec u ;\vec x, w) ) \\
50
	\smallskip
51
	\wit{\vec u ; \vec x}{\exists x^\safe . A(x)} (\vec u ;\vec x,  w) & \dfn & \begin{cases}
52
	1 & \exists x^\safe . \wit{\vec u; \vec x, x }{A(x)} (\vec u ;\vec x , x, w) = 1 \\
53
	0 & \text{otherwise} 
54
	\end{cases} \\
55
	\smallskip
56
	\wit{\vec u; \vec x}{\forall x^\safe . A(x)} (\vec u ;\vec x , w) & \dfn & 
57
	\begin{cases}
58
	0 & \exists x^\sigma. \wit{\vec u ; \vec x , x}{ A(x)} (\vec u; \vec x , x) = 0 \\
59
	1 & \text{otherwise}
60
	\end{cases}
61
	\end{array}
62
	\]
63
	We now define $\Wit{\vec a}{A}$ for a $\Sigma_{i+1}$-formula $A$ with free variables amongst $\vec a$.
64
	\[
65
	\begin{array}{rcl}
66
	\Wit{\vec u ; \vec x}{A} (\vec u ; \vec x , w) & \dfn & \wit{\vec u ; \vec x}{A} (\vec u ; \vec x)  \text{ if $A$ is $\Pi_i$} \\
67
	\smallskip
68
	\Wit{\vec u ; \vec x}{A \cor B} (\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cor ( ; \Wit{\vec u ; \vec x}{A} (\vec u ; \vec x , \vec w^A) ,\Wit{\vec u ; \vec x}{B} (\vec u ; \vec x , \vec w^B)  )  \\
69
	\smallskip
70
	\Wit{\vec u ; \vec x}{A \cand B} (\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cand ( ; \Wit{\vec u ; \vec x}{A} (\vec u ; \vec x , \vec w^A) ,\Wit{\vec u ; \vec x}{B} (\vec u ; \vec x , \vec w^B)  )  \\
71
	\smallskip
72
	\Wit{\vec u ; \vec x}{\exists x^\safe . A(x)} (\vec u ; \vec x , \vec w , w) & \dfn & \Wit{\vec u ; \vec x , x}{A(x)} ( \vec u ; \vec x , w , \vec w )
73
	\end{array}
74
	\]
75
	
76
	
77
\end{definition}
78

    
79
\nb{use (de)pairing to make sure only $i$ $\mu$s are used to express a $\Pi_i$ predicate.}
80

    
81
\begin{proposition}
82
	For $\Sigma_{i+1}$ formulae $A$, $\Wit{\vec u ; \vec x}{A}$ is a $\mubci{i} $ program.
83
\end{proposition}
84

    
85
\nb{In fact, need that $\wit{}{}$ is $\mubci{i}$ and $\Wit{}{}$ and the witness functions $\vec f$ are $\bc (\wit{}{})$}
86

    
87
Before proving the main theorem, we will need the following `witnessing lemma':
88

    
89
\begin{lemma}
90
	If $\pvbci{i+1} $ proves a $\Sigma^\safe_{i+1}$-sequent $\Gamma \seqar \Delta$ with free variables $\vec u^\normal , \vec x^\safe$ then there are $\mubci {i}$ functions $\vec f$ such that 
91
	\[
92
	\pvbci {i+1} \proves \Wit{\vec u , \vec x}{\bigwedge \Gamma} (\vec u ; \vec x , \vec w) \cimp \Wit{\vec u  , \vec x}{\bigvee \Delta } (\vec u ; \vec x, \vec f (\vec u ; \vec x , \vec w) )
93
	\]
94
	(we simply write $\Wit{\vec u ; \vec x}{A}(\vec u ; \vec x , \vec w)$, instead of $\Wit{\vec u ; \vec x}{A}(\vec u ; \vec x , \vec w) =1 $.
95
\end{lemma}
96
\begin{proof}
97
	By induction on the size of a $\pvbci{i+1} $ proof. 
98
	Interesting steps below:
99
	\begin{itemize}
100
		\item $\neg$-right. (Can assume only applies to atomic formulae, and so no effect.)
101
		\item $\exists$-right.
102
		\[
103
		\dfrac{\Gamma \seqar \Delta , A(t^\safe )}{ \Gamma \seqar \Delta, \exists x^\safe . A(x) }
104
		\]
105
		By the inductive hypothesis, have functions $\vec f(\vec u ; \vec x), \vec g (\vec u ; \vec x)$ such that,
106
		\[
107
		\pvbci{i+1} \proves 
108
		\Wit{\vec u ; \vec x}{\bigwedge \Gamma } (\vec u ; \vec x , \vec w)
109
		\cimp
110
		\left(
111
		\Wit{\vec u ; \vec x}{\bigvee \Delta} (\vec u ; \vec x , \vec f (\vec u ; \vec x , \vec w) )
112
		\cor
113
		\Wit{\vec u ; \vec x}{A(t)} (\vec u ; \vec x , \vec g (\vec u ; \vec x , \vec w))
114
		\right)
115
		\]
116
		(just use $t$ as one of the witness functions)
117
		\item $\forall$-right. (Must be a $\Pi_i$ formula, so forget witness and compute $\wit{}{}$)
118
		\item Contraction-right:
119
		\[
120
		\dfrac{\Gamma  \seqar \Delta , A ,A}{\Gamma \seqar \Delta, A}
121
		\]
122
		By infuctive hypothesis have functions $\vec f, \vec g^1 , \vec g^2$ such that:
123
		\[
124
		todo
125
		\]
126
		(just use conditional with a call to $\Wit{}{}$)
127
		\item induction
128
		\[
129
		\dfrac{\{\Gamma , A(a) \seqar A(s_i a) , \Delta\}_{i=0,1} }{\Gamma, A(0) \seqar A(t) , \Delta}
130
		\]
131
	\end{itemize}
132
\end{proof}
133

    
134
\subsection{Completeness}
135
Here we show that every $\mubci{i}$ function is definable in $\pvbci {i+1}$.
136

    
137

    
138
\nb{WoP known as `minimization' principles in bounded arithmetic}
139
\begin{theorem}
140
	[Well ordering property]
141
	\[
142
	\pvbci{i+1} \proves \exists x^\safe . A(x) \cimp \exists  x^\safe . (A(x) \cand \forall y^\safe . (A(y) \cimp x \leq y ) )
143
	\]
144
\end{theorem}
145
\begin{proof}
146
	We work in $\pvbci{i+1}$ and show the contrapositive. 
147
	Suppose:
148
	\begin{equation}
149
	\label{eqn:no-least}
150
	\forall x^\safe. (A(x) \cimp \exists y^\safe . A(y) \cand y<x )
151
	\end{equation}
152
	We show that,
153
	\begin{equation}
154
	\label{eqn:ih-wop}
155
	\forall x. \forall y \leq a - x. (\cnot A(y) \cimp \cnot A(y + x))
156
	\end{equation}
157
	by polynomial induction on $x$.
158
	
159
	Let $B(x)$ be such that \eqref{eqn:ih-wop} is $\forall x . B(x)$.
160
	\nb{If $A \in \Sigma^\safe_i \cup \Pi^\safe_i$ then $B \in \Pi^\safe_{i+1}$.}
161
	
162
	When $x=0$, notice that \eqref{eqn:ih-wop} is just a generalised identity.
163
	
164
	Suppose that $B(x)$ and let us show that $B(2x)$.
165
	Let $y \leq a - 2x$ such that $\cnot A(y)$. 
166
	Then $y\leq a-x$ so by $B(x)$ we have that $\cnot A(y+x)$.
167
	We also have that $y+x \leq a-x$ so by $B(x)$ we have that $\cnot A(y+2x)$, as required.
168
	
169
	Now suppose that $B(x)$ and let us show that $B(2x+1)$.
170
	Let $y \leq a - 2x - 1$ such that $\cnot A(y)$.
171
	By similar reasoning to the $2x$ case, we have that $\cnot A(y + 2x )$.
172
\end{proof}
173

    
174

    
175
\subsection{What we want for WoP}
176
From bounded arithmetic:
177

    
178
$\Sigma_{i+1}$-LMIN $ \iff$ $\Sigma_{i+1}$-PIND $\implies$ $\Sigma_i$-IND $\iff$ $\Sigma_i$-MIN $ \iff$ $\Pi_{i+1}$-MIN.
179

    
180
\subsection{Completeness proof idea}
181
For each $\mubci i$ function $f(\vec u ; \vec x)$ we $\Sigma_i$-define a formula $A_f (\vec u ; \vec x  , y )$ in $\pvbci{i+1}$ such that:
182
\[
183
\proves A_f (\vec u ; \vec x , y)
184
\quad 
185
\iff
186
\quad
187
f(\vec u ; \vec x) = y
188
\]
189
and $A_f$ is provably total in $\pvbci{i+1}$.
190

    
191
For the $\mu$ case, say we have the function:
192
\[
193
\mu x^{+1} . f(\vec u ; \vec x , x) =_2 0
194
\]
195
Let $A_f (\vec u ; \vec x , y)$ be given by the inductive hypothesis.
196
We define $A(\vec u ; \vec x , z)$ as:
197
\[
198
\begin{array}{rl}
199
&\left(
200
z=0 \  \cand \ \forall x^\safe , y^\safe . (A_f (\vec u ; \vec x , x, y) \cimp y=_2 1)
201
\right) \\
202
\cor & \left(
203
\begin{array}{ll}
204
z\neq 0 
205
& \cand\   \forall y^\safe . (A_f (\vec u ; \vec x , z , y) \cimp y=_2 0 ) \\
206
& \cand\ \forall x^\safe < p(;z) . (\forall y^\safe . A_f (\vec u ; \vec x , x , y) \cimp y=_2 1) 
207
\end{array}
208
\right)
209
\end{array}
210
\]
211
Notice that $A$ is $\Pi_k$, since $A_f$ is $\Sigma_k$.
212

    
213

    
214

    
215
What about, say recursion on a formula? Need a form of `ranked comprehension'?
216
E.g., when $A$ is $\Sigma_k$ then we can introduce a rank $k$ symbol (a sort?) such that:
217
\[
218
\forall \vec u^\normal, \vec x^\safe . \exists ! y^\safe . A(\vec u ; \vec x , y)
219
\implies
220
\exists f^\safe_r . \forall \vec u^\normal,\vec x^\safe, y^\safe . (A(\vec u ; \vec x, y) \ciff f^\safe_r (\vec u ; \vec x) = y )
221
\]
222

    
223
Otherwise, can we use definability of computations? E.g., if:
224
\[
225
\begin{array}{rcl}
226
f(0, \vec u ; \vec x ) & \dfn & g(\vec u ; \vec x) \\
227
f(s_i u , \vec u ; \vec x) & \dfn & h_i (u , \vec u ; \vec x , f(u,\vec u ; \vec x))
228
\end{array}
229
\]
230
Suppose we have $A_g (\vec u ; \vec x,y)$ and $A_i (u , \vec u ; \vec x , y , z)$ defining $g$ and $h_i$ respectively.
231
We define $A_f (u ,\vec u ; \vec x , y)$ as:
232
\[
233
\exists z^\safe . \left(
234
\begin{array}{ll}
235
& Seq(z) \cand \exists y_0 . ( A_g (\vec u ; \vec x , y_0) \cand \beta_0 (z , y_0) ) \cand \beta_{|u|} ( z,y ) \\
236
\cand & \forall k < |u| . \exists y_k , y_{k+1} . ( \beta_k (z, y_i) \cand \beta_{k+1} (z, y_{k+1})  \cand A_i (u , \vec u ; \vec x , y_k , y_{k+1}) )
237
\end{array}
238
\right)
239
\]
240

    
241
(Can we really assume $z$ is safe here?)
242

    
243

    
244
POINT: for whatever formulation, we need to prove:
245
\[
246
\exists y^\safe . A_f (a , \vec u ; \vec x , y) 
247
\quad \seqar \quad
248
\exists y^\safe . A_f (s_i a, \vec u ; \vec x , y)
249
\]
250

    
251
SHOULD HAVE: $\beta (i;x)$ for $i$th element of sequence $x$. 
252
Therefore need 'sharply bounded' quantification for normal variables?
253

    
254
In fact, why not $\beta(;i,x) $? Should be fine. So only safe quantification is needed for PH, but lose level-by-level delineation.
255

    
256
GOALS:
257
\begin{enumerate}
258
	\item PVBC + FCA + $\safe$-IND characterises PH. (Recursion included in PVBC)
259
	\item Refinement of above with `ranks' to delineate levels (definitions of $\pvbci{i}$).
260
	\item Arithmetic including both safe and sharply bounded normal quantification. (for sequences)
261
	\item (if time) allow both bounded and safe quantifiers?
262
\end{enumerate}
263

    
264

    
265

    
266
FCA:
267
\[
268
\exists f^\safe . \forall \vec u ; \vec x .
269
\left(
270
\exists y^\safe . A(\vec u ; \vec x , y) \ciff A(\vec u ; \vec x , f^\safe(\vec u ; \vec x))
271
\right)
272
\]
273
(with typing information)
274
This could be enough with open induction if we introduce ranks later? Yup, seems like a good idea. Can then make into a real `open' theory.
275

    
276
\subsection{Delineating levels using function ranks}