Révision 156 CSL17/pv-theories.tex
pv-theories.tex (revision 156) | ||
---|---|---|
1 | 1 |
\section{An extension of Bellantoni's theory PV for PH} |
2 | 2 |
|
3 |
PVBC+FCA+ safe induction characterises PH |
|
3 |
PVBC+FCA+ safe induction characterises PHcd
|
|
4 | 4 |
|
5 |
\begin{definition} |
|
6 |
[Axioms] |
|
7 |
The \emph{functional comprehension} schema is the following: |
|
8 |
\[ |
|
9 |
\exists f . \forall \vec u; \vec x . ( \exists y^\safe . A(\vec u ; \vec x , y) \ciff A(\vec u ; \vec x , f(\vec u ; \vec x) ) |
|
10 |
\] |
|
11 |
(can parametrise by which $A$ permitted) |
|
12 |
|
|
13 |
The \emph{recursion} schema is: |
|
14 |
\[ |
|
15 |
\forall g , h_0 , h_1 . \exists f . \forall u , \vec u ; \vec x . |
|
16 |
\left( |
|
17 |
\begin{array}{rl} |
|
18 |
& f(0 , \vec u ; \vec x) = g(\vec u ; \vec x) \\ |
|
19 |
\cand & f(\succ 0 u , \vec u ; \vec x) = h_0 (u , \vec u ; \vec x , f(u , \vec u ; \vec x)) \\ |
|
20 |
\cand & f(\succ 1 u , \vec u ; \vec x) = h_1 (u , \vec u ; \vec x , f(u , \vec u ; \vec x)) |
|
21 |
\end{array} |
|
22 |
\right) |
|
23 |
\] |
|
24 |
(should be well typed. Cannot avoid due to sequentiality problem.) |
|
25 |
\end{definition} |
|
26 |
|
|
27 |
\anupam{Original PV has explicit recursion symbols. Also, Krajicek's PVi has explicit symbols for the characteristic functions of each $\Sigma^b_i$ predicate.} |
|
28 |
|
|
29 |
\subsection{Soundness} |
|
30 |
We show that provably total functions of $\pvbci i$ are in $\fphi i$. |
|
31 |
|
|
32 |
The following is our main result: |
|
33 |
\begin{theorem} |
|
34 |
If $\pvbci i \proves \forall \vec u^\normal , \vec x^\sigma . \exists \vec y^\sigma. A(\vec u , \vec x , \vec y)$, then there are $\mubci i $ programs $\vec f (\vec u ; \vec x)$ such that $\pvbci i \proves\forall \vec u^\normal , \vec x^\sigma . A(\vec u , \vec x , \vec f (\vec u ; \vec x) ) $. |
|
35 |
\end{theorem} |
|
36 |
|
|
37 |
\begin{definition} |
|
38 |
[Witness predicate] |
|
39 |
The \emph{witness predicate} is a $\mubci{}$ program $\wit{\vec a}{A}$, parametrised by variables $\vec a$ and a formula $A$ whose free variables are amongst $\vec a$, defined as follows. |
|
40 |
If $A$ is a $\Pi_{i}$ formula then: |
|
41 |
\[ |
|
42 |
\begin{array}{rcl} |
|
43 |
\wit{\vec u; \vec x}{s=t} (\vec u ; \vec x, w) & \dfn & =(;s,t) \\ |
|
44 |
\smallskip |
|
45 |
\wit{\vec u; \vec x}{s\neq t} (\vec u ; \vec x, w) & \dfn & \neg (;=(;s,t)) \\ |
|
46 |
\smallskip |
|
47 |
\wit{\vec u ; \vec x}{A\cor B} (\vec u ; \vec x , w) & \dfn & \cor (; \wit{\vec u , \vec x}{A} (\vec u ; \vec x , w), \wit{\vec u , \vec x}{B} (\vec u ;\vec x, w) ) \\ |
|
48 |
\smallskip |
|
49 |
\wit{\vec u ; \vec x}{A\cand B} (\vec u ; \vec x , w) & \dfn & \cand(; \wit{\vec u , \vec x}{A} (\vec u ; \vec x , w), \wit{\vec u , \vec x}{B} (\vec u ;\vec x, w) ) \\ |
|
50 |
\smallskip |
|
51 |
\wit{\vec u ; \vec x}{\exists x^\safe . A(x)} (\vec u ;\vec x, w) & \dfn & \begin{cases} |
|
52 |
1 & \exists x^\safe . \wit{\vec u; \vec x, x }{A(x)} (\vec u ;\vec x , x, w) = 1 \\ |
|
53 |
0 & \text{otherwise} |
|
54 |
\end{cases} \\ |
|
55 |
\smallskip |
|
56 |
\wit{\vec u; \vec x}{\forall x^\safe . A(x)} (\vec u ;\vec x , w) & \dfn & |
|
57 |
\begin{cases} |
|
58 |
0 & \exists x^\sigma. \wit{\vec u ; \vec x , x}{ A(x)} (\vec u; \vec x , x) = 0 \\ |
|
59 |
1 & \text{otherwise} |
|
60 |
\end{cases} |
|
61 |
\end{array} |
|
62 |
\] |
|
63 |
We now define $\Wit{\vec a}{A}$ for a $\Sigma_{i+1}$-formula $A$ with free variables amongst $\vec a$. |
|
64 |
\[ |
|
65 |
\begin{array}{rcl} |
|
66 |
\Wit{\vec u ; \vec x}{A} (\vec u ; \vec x , w) & \dfn & \wit{\vec u ; \vec x}{A} (\vec u ; \vec x) \text{ if $A$ is $\Pi_i$} \\ |
|
67 |
\smallskip |
|
68 |
\Wit{\vec u ; \vec x}{A \cor B} (\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cor ( ; \Wit{\vec u ; \vec x}{A} (\vec u ; \vec x , \vec w^A) ,\Wit{\vec u ; \vec x}{B} (\vec u ; \vec x , \vec w^B) ) \\ |
|
69 |
\smallskip |
|
70 |
\Wit{\vec u ; \vec x}{A \cand B} (\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cand ( ; \Wit{\vec u ; \vec x}{A} (\vec u ; \vec x , \vec w^A) ,\Wit{\vec u ; \vec x}{B} (\vec u ; \vec x , \vec w^B) ) \\ |
|
71 |
\smallskip |
|
72 |
\Wit{\vec u ; \vec x}{\exists x^\safe . A(x)} (\vec u ; \vec x , \vec w , w) & \dfn & \Wit{\vec u ; \vec x , x}{A(x)} ( \vec u ; \vec x , w , \vec w ) |
|
73 |
\end{array} |
|
74 |
\] |
|
75 |
|
|
76 |
|
|
77 |
\end{definition} |
|
78 |
|
|
79 |
\nb{use (de)pairing to make sure only $i$ $\mu$s are used to express a $\Pi_i$ predicate.} |
|
80 |
|
|
81 |
\begin{proposition} |
|
82 |
For $\Sigma_{i+1}$ formulae $A$, $\Wit{\vec u ; \vec x}{A}$ is a $\mubci{i} $ program. |
|
83 |
\end{proposition} |
|
84 |
|
|
85 |
\nb{In fact, need that $\wit{}{}$ is $\mubci{i}$ and $\Wit{}{}$ and the witness functions $\vec f$ are $\bc (\wit{}{})$} |
|
86 |
|
|
87 |
Before proving the main theorem, we will need the following `witnessing lemma': |
|
88 |
|
|
89 |
\begin{lemma} |
|
90 |
If $\pvbci{i+1} $ proves a $\Sigma^\safe_{i+1}$-sequent $\Gamma \seqar \Delta$ with free variables $\vec u^\normal , \vec x^\safe$ then there are $\mubci {i}$ functions $\vec f$ such that |
|
91 |
\[ |
|
92 |
\pvbci {i+1} \proves \Wit{\vec u , \vec x}{\bigwedge \Gamma} (\vec u ; \vec x , \vec w) \cimp \Wit{\vec u , \vec x}{\bigvee \Delta } (\vec u ; \vec x, \vec f (\vec u ; \vec x , \vec w) ) |
|
93 |
\] |
|
94 |
(we simply write $\Wit{\vec u ; \vec x}{A}(\vec u ; \vec x , \vec w)$, instead of $\Wit{\vec u ; \vec x}{A}(\vec u ; \vec x , \vec w) =1 $. |
|
95 |
\end{lemma} |
|
96 |
\begin{proof} |
|
97 |
By induction on the size of a $\pvbci{i+1} $ proof. |
|
98 |
Interesting steps below: |
|
99 |
\begin{itemize} |
|
100 |
\item $\neg$-right. (Can assume only applies to atomic formulae, and so no effect.) |
|
101 |
\item $\exists$-right. |
|
102 |
\[ |
|
103 |
\dfrac{\Gamma \seqar \Delta , A(t^\safe )}{ \Gamma \seqar \Delta, \exists x^\safe . A(x) } |
|
104 |
\] |
|
105 |
By the inductive hypothesis, have functions $\vec f(\vec u ; \vec x), \vec g (\vec u ; \vec x)$ such that, |
|
106 |
\[ |
|
107 |
\pvbci{i+1} \proves |
|
108 |
\Wit{\vec u ; \vec x}{\bigwedge \Gamma } (\vec u ; \vec x , \vec w) |
|
109 |
\cimp |
|
110 |
\left( |
|
111 |
\Wit{\vec u ; \vec x}{\bigvee \Delta} (\vec u ; \vec x , \vec f (\vec u ; \vec x , \vec w) ) |
|
112 |
\cor |
|
113 |
\Wit{\vec u ; \vec x}{A(t)} (\vec u ; \vec x , \vec g (\vec u ; \vec x , \vec w)) |
|
114 |
\right) |
|
115 |
\] |
|
116 |
(just use $t$ as one of the witness functions) |
|
117 |
\item $\forall$-right. (Must be a $\Pi_i$ formula, so forget witness and compute $\wit{}{}$) |
|
118 |
\item Contraction-right: |
|
119 |
\[ |
|
120 |
\dfrac{\Gamma \seqar \Delta , A ,A}{\Gamma \seqar \Delta, A} |
|
121 |
\] |
|
122 |
By infuctive hypothesis have functions $\vec f, \vec g^1 , \vec g^2$ such that: |
|
123 |
\[ |
|
124 |
todo |
|
125 |
\] |
|
126 |
(just use conditional with a call to $\Wit{}{}$) |
|
127 |
\item induction |
|
128 |
\[ |
|
129 |
\dfrac{\{\Gamma , A(a) \seqar A(s_i a) , \Delta\}_{i=0,1} }{\Gamma, A(0) \seqar A(t) , \Delta} |
|
130 |
\] |
|
131 |
\end{itemize} |
|
132 |
\end{proof} |
|
133 |
|
|
134 |
\subsection{Completeness} |
|
135 |
Here we show that every $\mubci{i}$ function is definable in $\pvbci {i+1}$. |
|
136 |
|
|
137 |
|
|
138 |
\nb{WoP known as `minimization' principles in bounded arithmetic} |
|
139 |
\begin{theorem} |
|
140 |
[Well ordering property] |
|
141 |
\[ |
|
142 |
\pvbci{i+1} \proves \exists x^\safe . A(x) \cimp \exists x^\safe . (A(x) \cand \forall y^\safe . (A(y) \cimp x \leq y ) ) |
|
143 |
\] |
|
144 |
\end{theorem} |
|
145 |
\begin{proof} |
|
146 |
We work in $\pvbci{i+1}$ and show the contrapositive. |
|
147 |
Suppose: |
|
148 |
\begin{equation} |
|
149 |
\label{eqn:no-least} |
|
150 |
\forall x^\safe. (A(x) \cimp \exists y^\safe . A(y) \cand y<x ) |
|
151 |
\end{equation} |
|
152 |
We show that, |
|
153 |
\begin{equation} |
|
154 |
\label{eqn:ih-wop} |
|
155 |
\forall x. \forall y \leq a - x. (\cnot A(y) \cimp \cnot A(y + x)) |
|
156 |
\end{equation} |
|
157 |
by polynomial induction on $x$. |
|
158 |
|
|
159 |
Let $B(x)$ be such that \eqref{eqn:ih-wop} is $\forall x . B(x)$. |
|
160 |
\nb{If $A \in \Sigma^\safe_i \cup \Pi^\safe_i$ then $B \in \Pi^\safe_{i+1}$.} |
|
161 |
|
|
162 |
When $x=0$, notice that \eqref{eqn:ih-wop} is just a generalised identity. |
|
163 |
|
|
164 |
Suppose that $B(x)$ and let us show that $B(2x)$. |
|
165 |
Let $y \leq a - 2x$ such that $\cnot A(y)$. |
|
166 |
Then $y\leq a-x$ so by $B(x)$ we have that $\cnot A(y+x)$. |
|
167 |
We also have that $y+x \leq a-x$ so by $B(x)$ we have that $\cnot A(y+2x)$, as required. |
|
168 |
|
|
169 |
Now suppose that $B(x)$ and let us show that $B(2x+1)$. |
|
170 |
Let $y \leq a - 2x - 1$ such that $\cnot A(y)$. |
|
171 |
By similar reasoning to the $2x$ case, we have that $\cnot A(y + 2x )$. |
|
172 |
\end{proof} |
|
173 |
|
|
174 |
|
|
175 |
\subsection{What we want for WoP} |
|
176 |
From bounded arithmetic: |
|
177 |
|
|
178 |
$\Sigma_{i+1}$-LMIN $ \iff$ $\Sigma_{i+1}$-PIND $\implies$ $\Sigma_i$-IND $\iff$ $\Sigma_i$-MIN $ \iff$ $\Pi_{i+1}$-MIN. |
|
179 |
|
|
180 |
\subsection{Completeness proof idea} |
|
181 |
For each $\mubci i$ function $f(\vec u ; \vec x)$ we $\Sigma_i$-define a formula $A_f (\vec u ; \vec x , y )$ in $\pvbci{i+1}$ such that: |
|
182 |
\[ |
|
183 |
\proves A_f (\vec u ; \vec x , y) |
|
184 |
\quad |
|
185 |
\iff |
|
186 |
\quad |
|
187 |
f(\vec u ; \vec x) = y |
|
188 |
\] |
|
189 |
and $A_f$ is provably total in $\pvbci{i+1}$. |
|
190 |
|
|
191 |
For the $\mu$ case, say we have the function: |
|
192 |
\[ |
|
193 |
\mu x^{+1} . f(\vec u ; \vec x , x) =_2 0 |
|
194 |
\] |
|
195 |
Let $A_f (\vec u ; \vec x , y)$ be given by the inductive hypothesis. |
|
196 |
We define $A(\vec u ; \vec x , z)$ as: |
|
197 |
\[ |
|
198 |
\begin{array}{rl} |
|
199 |
&\left( |
|
200 |
z=0 \ \cand \ \forall x^\safe , y^\safe . (A_f (\vec u ; \vec x , x, y) \cimp y=_2 1) |
|
201 |
\right) \\ |
|
202 |
\cor & \left( |
|
203 |
\begin{array}{ll} |
|
204 |
z\neq 0 |
|
205 |
& \cand\ \forall y^\safe . (A_f (\vec u ; \vec x , z , y) \cimp y=_2 0 ) \\ |
|
206 |
& \cand\ \forall x^\safe < p(;z) . (\forall y^\safe . A_f (\vec u ; \vec x , x , y) \cimp y=_2 1) |
|
207 |
\end{array} |
|
208 |
\right) |
|
209 |
\end{array} |
|
210 |
\] |
|
211 |
Notice that $A$ is $\Pi_k$, since $A_f$ is $\Sigma_k$. |
|
212 |
|
|
213 |
|
|
214 |
|
|
215 |
What about, say recursion on a formula? Need a form of `ranked comprehension'? |
|
216 |
E.g., when $A$ is $\Sigma_k$ then we can introduce a rank $k$ symbol (a sort?) such that: |
|
217 |
\[ |
|
218 |
\forall \vec u^\normal, \vec x^\safe . \exists ! y^\safe . A(\vec u ; \vec x , y) |
|
219 |
\implies |
|
220 |
\exists f^\safe_r . \forall \vec u^\normal,\vec x^\safe, y^\safe . (A(\vec u ; \vec x, y) \ciff f^\safe_r (\vec u ; \vec x) = y ) |
|
221 |
\] |
|
222 |
|
|
223 |
Otherwise, can we use definability of computations? E.g., if: |
|
224 |
\[ |
|
225 |
\begin{array}{rcl} |
|
226 |
f(0, \vec u ; \vec x ) & \dfn & g(\vec u ; \vec x) \\ |
|
227 |
f(s_i u , \vec u ; \vec x) & \dfn & h_i (u , \vec u ; \vec x , f(u,\vec u ; \vec x)) |
|
228 |
\end{array} |
|
229 |
\] |
|
230 |
Suppose we have $A_g (\vec u ; \vec x,y)$ and $A_i (u , \vec u ; \vec x , y , z)$ defining $g$ and $h_i$ respectively. |
|
231 |
We define $A_f (u ,\vec u ; \vec x , y)$ as: |
|
232 |
\[ |
|
233 |
\exists z^\safe . \left( |
|
234 |
\begin{array}{ll} |
|
235 |
& Seq(z) \cand \exists y_0 . ( A_g (\vec u ; \vec x , y_0) \cand \beta_0 (z , y_0) ) \cand \beta_{|u|} ( z,y ) \\ |
|
236 |
\cand & \forall k < |u| . \exists y_k , y_{k+1} . ( \beta_k (z, y_i) \cand \beta_{k+1} (z, y_{k+1}) \cand A_i (u , \vec u ; \vec x , y_k , y_{k+1}) ) |
|
237 |
\end{array} |
|
238 |
\right) |
|
239 |
\] |
|
240 |
|
|
241 |
(Can we really assume $z$ is safe here?) |
|
242 |
|
|
243 |
|
|
244 |
POINT: for whatever formulation, we need to prove: |
|
245 |
\[ |
|
246 |
\exists y^\safe . A_f (a , \vec u ; \vec x , y) |
|
247 |
\quad \seqar \quad |
|
248 |
\exists y^\safe . A_f (s_i a, \vec u ; \vec x , y) |
|
249 |
\] |
|
250 |
|
|
251 |
SHOULD HAVE: $\beta (i;x)$ for $i$th element of sequence $x$. |
|
252 |
Therefore need 'sharply bounded' quantification for normal variables? |
|
253 |
|
|
254 |
In fact, why not $\beta(;i,x) $? Should be fine. So only safe quantification is needed for PH, but lose level-by-level delineation. |
|
255 |
|
|
256 |
GOALS: |
|
257 |
\begin{enumerate} |
|
258 |
\item PVBC + FCA + $\safe$-IND characterises PH. (Recursion included in PVBC) |
|
259 |
\item Refinement of above with `ranks' to delineate levels (definitions of $\pvbci{i}$). |
|
260 |
\item Arithmetic including both safe and sharply bounded normal quantification. (for sequences) |
|
261 |
\item (if time) allow both bounded and safe quantifiers? |
|
262 |
\end{enumerate} |
|
263 |
|
|
264 |
|
|
265 |
|
|
266 |
FCA: |
|
267 |
\[ |
|
268 |
\exists f^\safe . \forall \vec u ; \vec x . |
|
269 |
\left( |
|
270 |
\exists y^\safe . A(\vec u ; \vec x , y) \ciff A(\vec u ; \vec x , f^\safe(\vec u ; \vec x)) |
|
271 |
\right) |
|
272 |
\] |
|
273 |
(with typing information) |
|
274 |
This could be enough with open induction if we introduce ranks later? Yup, seems like a good idea. Can then make into a real `open' theory. |
|
275 |
|
|
5 | 276 |
\subsection{Delineating levels using function ranks} |
Formats disponibles : Unified diff