Révision 156

CSL17/arithmetic.tex (revision 156)
1
\section{A two-sorted arithmetic for the polynomial hierarchy}
1
\section{A two-sorted arithmetic for the polynomial hierarchy}
2

  
3
(Here use a variation of S12 with sharply bounded quantifiers and safe quantifiers)
CSL17/ph-macros.tex (revision 156)
1
\newcommand{\nb}[1]{{\color{blue} NB: #1}}
1
\newcommand{\nb}[1]{{\color{red} NB: #1}}
2
\newcommand{\anupam}[1]{{\color{orange} Anupam: #1}}
3
\newcommand{\patrick}[1]{{\color{blue} Patrick: #1}}
2 4

  
3 5
%\newtheorem{theorem}{Theorem}
4
%\newtheorem{proposition}[theorem]{Proposition}
6
\newtheorem{proposition}[theorem]{Proposition}
5 7
%\newtheorem{lemma}[theorem]{Lemma}
6 8
%
7 9
%
8 10
%\theoremstyle{definition}
9 11
%\newtheorem{definition}[theorem]{Definition}
10 12

  
13
\newcommand{\Word}{\mathbb{W}}
11 14

  
15

  
12 16
\newcommand{\wit}[2]{\mathit{wit}^{#1}_{#2}}
13 17
\newcommand{\Wit}[2]{\mathit{Wit}^{#1}_{#2}}
14 18
\newcommand{\dfn}{:=}
15 19
\newcommand{\seqar}{\rightarrow}
16 20
\newcommand{\proves}{\vdash}
17 21

  
18

  
22
\newcommand{\pred}{p}
23
\renewcommand{\succ}[1]{s_i}
19 24
\newcommand{\safe}{\sigma}
20 25
\newcommand{\normal}{\nu}
21 26

  
CSL17/intro.tex (revision 156)
1
\section{Introduction}
1
\section{Introduction and motivation}
2 2
\label{sect:intro}
3 3

  
4
(Perhaps copy intro from DICE?)
4
\anupam{Copied below from DICE submission}
5

  
6
Today, there are countless approaches towards characterising complexity classes via logic.
7
Foremost amongst these lies the proof-theoretic approach, characterising classes as the `representable' functions of some logic or theory.
8
Examples include bounded arithmetic \cite{Buss86book} \cite{Krajicek:1996:BAP:225488} \cite{Cook:2010:LFP:1734064}, applicative theories \cite{Cantini02} \cite{KahOit:13:ph-levels}, intrinsic and ramified theories \cite{Leivant94:intrinsic-theories} \cite{BelHof:02}, fragments of linear logic \cite{GirardSS92:bounded-ll} \cite{Girard94:lll} \cite{Lafont04} \cite{Baillot15} and fragments of intuitionistic logic \cite{Leivant94:found-delin-ptime}.
9

  
10
To some extent there is a distinction between various notions of `representability', namely between logics that \emph{type} terms computing functions of a given complexity class, and theories that prove the \emph{totality} or \emph{convergence} of programs computing functions in a given complexity class.
11
Perhaps a more important (and somewhat orthogonal) distinction for the \textsc{Dice-Fopara} community is whether the constraints on the logic or theory are \emph{implicit} or \emph{explicit}. The former includes constraints such as ramification, type level and substructural considerations, while the latter includes bounded quantification, bounded modalities etc. This distinction is also naturally exhibited in associated function algebras, e.g. Cobham's \emph{limited} recursion on notation \cite{Cobham} vs.\ Bellantoni and Cook's \emph{predicative} recursion on notation \cite{BellantoniCook92}.
12

  
13
Some correlations abound: explicit bounds are typically far more useful for more fine-grained characterisations of complexity classes, e.g.\ levels of the polynomial or arithmetical hierarchies, and often admit witness extraction methods that remain in a ground type programming language, e.g.\ via recursion theoretic characterisations. Implicit bounds, however, are more often associated with higher-typed programming languages, which are arguably more useful for achieving witness extraction at all for powerful theories such as arithmetic and set theory, cf.~\cite{avigad1998godel}, \cite{troelstra1998realizability}. Complexity bounds are harder to obtain, but the framework is nonetheless somewhat more desirable since no bounds occur in the characterisation itself \emph{per se}.
14

  
15
In this line of work we attempt to ameliorate the situation by using implicit methods to delineate fine-grained hierarchies of feasible complexity classes, namely the \emph{polynomial hierarchy}, $\ph$.
16
One particular feature of this work that helps make this possible is to break one of the aforementioned correlations: while we use implicit constraints, our witness extraction methods will use only functions of bounded type level. In this way we can naturally appeal to function algebras, which are of ground type in nature, which implicitly characterise $\ph$, namely via \emph{predicative minimisation} \cite{BellantoniThesis}.
17
In order to remain in this class of programs and not get lost with higher types, we appeal to the \emph{witness function method} of extracting programs from proofs, a technique developed by Buss \cite{Buss86book} \cite{Buss:95:wfm-arith}, which is ideal for extracting ground programs directly from classical proofs in weak theories.
18
This extends work presented in \cite{BaillotDas16}. %at \emph{CSL '16}.
19

  
20
\subsection{State of the art}
21
As we have already argued, it is natural to expect that characterisations of hierarchies such as $\ph$ are more readily established by using ground or bounded type witness extraction procedures, due to the correspondence between logical searches in a program and the quantification over objects of ground type in a theory.
22
As justification for this position, consider the following table of examples of known characterisations:\footnote{All classes can be taken in their functional variations.}
23
%, distinguished by the type level of programs extracted:
24

  
25
\bigskip
26

  
27
\begin{tabular}{c|c|c}
28
	Class &	Ground & Higher order\\
29
	\hline
30
	%	quantifiers  & type-level\\
31
	$\nc^i$    & $\mathit{TNC}^i$ \cite{CloTak:1995:nc-ac}, $\mathit{VNC}^i$ \cite{Cook:2010:LFP:1734064} & - \\
32
	$\ptime$  &  $S^1_2$ \cite{Buss86book}, \cite{Strahm03}, $V^1$ \cite{Zambella96} \cite{Cook:2010:LFP:1734064} & $\mathit{LLL}$ \cite{Girard94:lll}, $\mathit{SLL}$ \cite{Lafont04} \\
33
	$\Box_i$  & $S^i_2$ \cite{Buss86book}, \cite{KahOit:13:ph-levels} & -  \\
34
	$\ph$& $S_2$ & - \\
35
	$\pspace$& $U^1_2$ \cite{Buss86book} & $\mathit{STA}_B$ \cite{GaboardiMarionRonchi12} \\
36
	%	$k$-$\exptime$ & -  & $\mathit{ELL}(k)$ \\
37
	Elementary & $I\Delta_0 + \exp$  & $\mathit{ELL}\;  \cite{Girard94:lll}$
38
\end{tabular}
39

  
40
\bigskip
41

  
42
\noindent
43
Thus, if we want an implicit characterisation of $\ph$ in a logical theory, we should break the apparent (although not universal) link between `implicit' and `higher type'. 
44
%If we restrict to the ground setting, where extracted programs do not make use of higher types, we have the following picture.
45
%
46
% Now, if we restrict to the ground setting, where extracted programs do not make use of higher types, there are still several 
47
Now, if we zoom in on the ground setting, where extracted programs do not make use of higher types, there are still several parameters by which the characterisations can vary, in particular:
48
\begin{itemize}
49
	\item How are programs specified in the language of the theory? By a formula, as in Peano arithmetic, by a first-order equational program, or by an applicative term in the style of combinatory algebra;
50
	\item What type of programs are extracted from proofs of the theory? A program of a bounded recursion class, e.g.\ of Cobham's algebra, or of a tiered recursion class, e.g.\ of Bellantoni and Cook's algebra.
51
\end{itemize}
52
We classify some known characterisations from the literature according to these two parameters in  the following table:
53
\bigskip
54

  
55
\begin{tabular}{c|c|c}
56
	{
57
		%\small model of comp. $\backslash$ extracted program 
58
	} & bounded rec. programs & tiered rec. programs \\
59
	\hline &&\\
60
	formula & $\ph$, $\square_i$ (Buss \cite{Buss86book})&\\
61
	%	& bounded induction (Buss \cite{Buss86book}) &\\
62
	\hline &&\\
63
	equational && $\ptime$\\
64
	&& (Leivant \cite{Leivant94:intrinsic-theories}) \\
65
	\hline &&\\
66
	applicative & $\ptime$ (Strahm \cite{Strahm03})  & $\ptime$ \\
67
	&$\ph$ (Kahle-Oitavem \cite{KahOit:13:ph-levels})& (Cantini \cite{Cantini02})
68
\end{tabular}
69

  
70
%TODO: improve table to make clear columns and rows, explicit and implicit columns.
71
%
72
%\begin{tabular}{c|c|c|c}
73
%	{
74
%		%\small model of comp. $\backslash$ extracted program 
75
%		} & Cobham & mon. constraints & BC-like \\
76
%	\hline &&\\
77
%	formula & PH, $\square_i$&&\\
78
%	& bounded induction (Buss) &&\\
79
%	\hline &&\\
80
%	equational &&& P\\
81
%	&&& (Leivant) \\
82
%	\hline &&\\
83
%	applicative &&PH & P \\
84
%	&&(Kahle-Oitavem)& (Cantini)
85
%\end{tabular}
86

  
87
\bigskip
88

  
89
\noindent
90
Our goal is to extend the approach using extraction of programs of a tiered recursion class (second column), using the equational style of specification (second row), to the whole of the polynomial hierarchy, i.e.\  $\ph$ and its levels $\square_i$.
91
%Our goal is to extend the implicit approach, via variations of Bellantoni-Cook (BC) programs, to the whole of the polynomial hierarchy.
CSL17/ph-biblio.bib (revision 156)
1

  
2
@article{GaboardiMarionRonchi12,
3
  author    = {Marco Gaboardi and
4
               Jean{-}Yves Marion and
5
               Simona Ronchi Della Rocca},
6
  title     = {An Implicit Characterization of {PSPACE}},
7
  journal   = {{ACM} Trans. Comput. Log.},
8
  volume    = {13},
9
  number    = {2},
10
  pages     = {18:1--18:36},
11
  year      = {2012},
12
  url       = {http://doi.acm.org/10.1145/2159531.2159540},
13
  doi       = {10.1145/2159531.2159540},
14
  timestamp = {Mon, 09 Jan 2017 14:08:26 +0100},
15
  biburl    = {http://dblp.uni-trier.de/rec/bib/journals/tocl/GaboardiMR12},
16
  bibsource = {dblp computer science bibliography, http://dblp.org}
17
}
18

  
19
@article{Baelde12,
20
  author    = {David Baelde},
21
  title     = {Least and Greatest Fixed Points in Linear Logic},
22
  journal   = {{ACM} Trans. Comput. Log.},
23
  volume    = {13},
24
  number    = {1},
25
  pages     = {2},
26
  year      = {2012}
27
  }
28

  
29
@inproceedings{BaillotDas16,
30
  author    = {Patrick Baillot and
31
               Anupam Das},
32
  title     = {Free-Cut Elimination in Linear Logic and an Application to a Feasible
33
               Arithmetic},
34
  booktitle = {Proceedings of CSL 2016},
35
  pages     = {40:1--40:18},
36
    series    = {LIPIcs},
37
  volume    = {62},
38
  publisher = {Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik},
39
  year      = {2016}
40
 }
41

  
42
@article{BellantoniCook92,
43
  author    = {Stephen Bellantoni and
44
               Stephen A. Cook},
45
  title     = {A New Recursion-Theoretic Characterization of the Polytime Functions},
46
  journal   = {Computational Complexity},
47
  volume    = {2},
48
  pages     = {97--110},
49
  year      = {1992}
50
 }
51

  
52
@inproceedings{Cobham,
53
	author = {Cobham, A.},
54
	title = {On the intrinsic computational difficulty of functions},
55
	booktitle={Proc. of the 1964 International Congress for Logic, Methodology, and the Philosophy
56
	of Science},
57
	year = {1964},
58
	issn = {0001-0782},
59
	pages = {24--30},
60
		publisher = {North Holland, Amsterdam}
61
} 
62

  
63

  
64
@article{Dershowitz:1979:PTM:359138.359142,
65
	author = {Dershowitz, Nachum and Manna, Zohar},
66
	title = {Proving Termination with Multiset Orderings},
67
	journal = {Commun. ACM},
68
	issue_date = {Aug. 1979},
69
	volume = {22},
70
	number = {8},
71
	month = aug,
72
	year = {1979},
73
	issn = {0001-0782},
74
	pages = {465--476},
75
	numpages = {12},
76
	doi = {10.1145/359138.359142},
77
	acmid = {359142},
78
	publisher = {ACM},
79
	address = {New York, NY, USA},
80
	keywords = {bags, multisets, production systems, program correctness, program termination, program verification, reduction rules, term rewriting systems, tree replacement systems, well-founded orderings, well-founded sets},
81
} 
82

  
83

  
84

  
85
@article{Beckmann11,
86
  author    = {Arnold Beckmann and
87
               Samuel R. Buss},
88
  title     = {Corrected upper bounds for free-cut elimination},
89
  journal   = {Theor. Comput. Sci.},
90
  volume    = {412},
91
  number    = {39},
92
  pages     = {5433--5445},
93
  year      = {2011}
94
}
95

  
96

  
97
@Phdthesis{BellantoniThesis,
98
author={Stephen J. Bellantoni},
99
title={Predicative Recursion and Computational Complexity},
100
school={University of Toronto},
101
year={1992}
102
}
103

  
104
@article{BelHof:02,
105
  author    = {Stephen Bellantoni and
106
               Martin Hofmann},
107
  title     = {A New "Feasible" Arithmetic},
108
  journal   = {J. Symb. Log.},
109
  volume    = {67},
110
  number    = {1},
111
  pages     = {104--116},
112
  year      = {2002}
113
 }
114

  
115
@article{Girard98,
116
  author    = {Jean{-}Yves Girard},
117
  title     = {Light Linear Logic},
118
  journal   = {Inf. Comput.},
119
  volume    = {143},
120
  number    = {2},
121
  pages     = {175--204},
122
  year      = {1998}
123
 }
124

  
125
@article{Hofmann00,
126
  author    = {Martin Hofmann},
127
  title     = {Safe recursion with higher types and BCK-algebra},
128
  journal   = {Ann. Pure Appl. Logic},
129
  volume    = {104},
130
  number    = {1-3},
131
  pages     = {113--166},
132
  year      = {2000}
133
  }
134

  
135
@article{Terui04,
136
  author    = {Kazushige Terui},
137
  title     = {Light Affine Set Theory: {A} Naive Set Theory of Polynomial Time},
138
  journal   = {Studia Logica},
139
  volume    = {77},
140
  number    = {1},
141
  pages     = {9--40},
142
  year      = {2004}
143
  }
144

  
145

  
146
@article{Leivant94:found-delin-ptime,
147
  author    = {Daniel Leivant},
148
  title     = {A Foundational Delineation of Poly-time},
149
  journal   = {Inf. Comput.},
150
  volume    = {110},
151
  number    = {2},
152
  pages     = {391--420},
153
  year      = {1994}
154
  }
155

  
156

  
157
@book{Buss86book,
158
  title={Bounded arithmetic},
159
  author={Buss, Samuel R},
160
  volume={86},
161
  year={1986},
162
  publisher={Bibliopolis}
163
}
164

  
165

  
166
@inproceedings{Leivant94:intrinsic-theories,
167
  author    = {Daniel Leivant},
168
  title={Intrinsic Theories and Computational Complexity},
169
  booktitle     = {Logical and Computational Complexity. Selected Papers. Logic and Computational
170
               Complexity, International Workshop {LCC} '94, Indianapolis, Indiana,
171
               USA, 13-16 October 1994},
172
  series    = {Lecture Notes in Computer Science},
173
  volume    = {960},
174
  pages={177-194},
175
  publisher = {Springer},
176
  year      = {1995}
177
  
178
}
179

  
180
@article{Cantini02,
181
  author    = {Andrea Cantini},
182
  title     = {Polytime, combinatory logic and positive safe induction},
183
  journal   = {Arch. Math. Log.},
184
  volume    = {41},
185
  number    = {2},
186
  pages     = {169--189},
187
  year      = {2002}
188
  }
189

  
190
@inproceedings{Girard94:lll,
191
  author    = {Jean{-}Yves Girard},
192
  title     = {Light Linear Logic},
193
  booktitle = {Logical and Computational Complexity. Selected Papers. {LCC} '94.},
194
  pages     = {145--176},
195
  year      = {1994},
196
  crossref  = {DBLP:conf/lcc/1994},
197
  doi       = {10.1007/3-540-60178-3_83},
198
  timestamp = {Thu, 23 Jun 2011 19:50:18 +0200},
199
  bibsource = {dblp computer science bibliography, http://dblp.org}
200
 }
201

  
202

  
203
@article{LincolnMSS92,
204
  author    = {Patrick Lincoln and
205
               John C. Mitchell and
206
               Andre Scedrov and
207
               Natarajan Shankar},
208
  title     = {Decision Problems for Propositional Linear Logic},
209
  journal   = {Ann. Pure Appl. Logic},
210
  volume    = {56},
211
  number    = {1-3},
212
  pages     = {239--311},
213
  year      = {1992}
214
 }
215

  
216
@article{Murawski04,
217
  author    = {Andrzej S. Murawski and
218
               C.{-}H. Luke Ong},
219
  title     = {On an interpretation of safe recursion in light affine logic},
220
  journal   = {Theor. Comput. Sci.},
221
  volume    = {318},
222
  number    = {1-2},
223
  pages     = {197--223},
224
  year      = {2004}
225
}
226

  
227
@article{Avron88,
228
  author    = {Arnon Avron},
229
  title     = {The Semantics and Proof Theory of Linear Logic},
230
  journal   = {Theor. Comput. Sci.},
231
  volume    = {57},
232
  pages     = {161--184},
233
  year      = {1988}
234
 
235
}
236
@article{GirardSS92:bounded-ll,
237
  author    = {Jean{-}Yves Girard and
238
               Andre Scedrov and
239
               Philip J. Scott},
240
  title     = {Bounded Linear Logic: {A} Modular Approach to Polynomial-Time Computability},
241
  journal   = {Theor. Comput. Sci.},
242
  volume    = {97},
243
  number    = {1},
244
  pages     = {1--66},
245
  year      = {1992}
246
 }
247

  
248
@article{Lafont04,
249
  author    = {Yves Lafont},
250
  title     = {Soft linear logic and polynomial time},
251
  journal   = {Theor. Comput. Sci.},
252
  volume    = {318},
253
  number    = {1-2},
254
  pages     = {163--180},
255
  year      = {2004}
256
 }
257

  
258

  
259
@inproceedings{Lasson11,
260
  author    = {Marc Lasson},
261
  title     = {Controlling Program Extraction in Light Logics},
262
  booktitle = {Typed Lambda Calculi and Applications - 10th International Conference,
263
               {TLCA} 2011, Novi Sad, Serbia, June 1-3, 2011. Proceedings},
264
  pages     = {123--137},
265
  series    = {Lecture Notes in Computer Science},
266
  volume    = {6690},
267
  publisher = {Springer},
268
  year      = {2011}
269
 }
270

  
271
@book{Takeuti87,
272
  title={Proof Theory},
273
  author={Takeuti, G.},
274
  year={1987},
275
  publisher={North-Holland, Amsterdam},
276
  note={and ed.}
277
}
278
@article{Girard87,
279
  author    = {Jean{-}Yves Girard},
280
  title     = {Linear Logic},
281
  journal   = {Theor. Comput. Sci.},
282
  volume    = {50},
283
  pages     = {1--102},
284
  year      = {1987},
285
  url       = {http://dx.doi.org/10.1016/0304-3975(87)90045-4},
286
  doi       = {10.1016/0304-3975(87)90045-4},
287
  timestamp = {Wed, 07 Sep 2011 12:13:20 +0200},
288
  biburl    = {http://dblp.uni-trier.de/rec/bib/journals/tcs/Girard87},
289
  bibsource = {dblp computer science bibliography, http://dblp.org}
290
}
291

  
292

  
293
@article{Buss98:intro-proof-theory,
294
  title={An introduction to proof theory},
295
  author={Buss, Samuel R},
296
  journal={Handbook of proof theory},
297
  volume={137},
298
  pages={1--78},
299
  year={1998}
300
}
301
@incollection{Miller04,
302
	year = {2004},
303
	author = {Dale Miller},
304
	editor = {Thomas Ehrhard},
305
	pages = {316--119},
306
	booktitle = {Linear Logic in Computer Science},
307
	publisher = {Cambridge University Press},
308
	title = {Overview of Linear Logic Programming}
309
}
310

  
311

  
312

  
313

  
314
@article{Andreoli92,
315
	author    = {Jean{-}Marc Andreoli},
316
	title     = {Logic Programming with Focusing Proofs in Linear Logic},
317
	journal   = {J. Log. Comput.},
318
	volume    = {2},
319
	number    = {3},
320
	pages     = {297--347},
321
	year      = {1992},
322
	doi       = {10.1093/logcom/2.3.297},
323
	timestamp = {Wed, 29 Jun 2011 15:52:24 +0200},
324
	bibsource = {dblp computer science bibliography, http://dblp.org}
325
}
326
@article{FriedmanM92,
327
	author    = {Harvey Friedman and
328
	Robert K. Meyer},
329
	title     = {Whither Relevant Arithmetic?},
330
	journal   = {J. Symb. Log.},
331
	volume    = {57},
332
	number    = {3},
333
	pages     = {824--831},
334
	year      = {1992},
335
	doi       = {10.2307/2275433},
336
	timestamp = {Tue, 05 Aug 2014 16:36:24 +0200},
337
	bibsource = {dblp computer science bibliography, http://dblp.org}
338
}
339

  
340

  
341

  
342
@inproceedings{Marion01,
343
  author    = {Jean{-}Yves Marion},
344
  title     = {Actual Arithmetic and Feasibility},
345
  booktitle = {Proceedings of Computer Science Logic (CSL 2001)} ,
346
    pages     = {115--129},
347
   series    = {Lecture Notes in Computer Science},
348
  volume    = {2142},
349
  publisher = {Springer},
350
  year      = {2001}
351
  }
352

  
353

  
354

  
355

  
356

  
357
@book{Cook:2010:LFP:1734064,
358
	author = {Cook, Stephen and Nguyen, Phuong},
359
	title = {Logical Foundations of Proof Complexity},
360
	year = {2010},
361
	isbn = {052151729X, 9780521517294},
362
	edition = {1st},
363
	publisher = {Cambridge University Press},
364
	address = {New York, NY, USA},
365
} 
366

  
367
@article{Baillot15,
368
	author    = {Patrick Baillot},
369
	title     = {On the expressivity of elementary linear logic: Characterizing Ptime
370
	and an exponential time hierarchy},
371
	journal   = {Inf. Comput.},
372
	volume    = {241},
373
	pages     = {3--31},
374
	year      = {2015},
375
	url       = {http://dx.doi.org/10.1016/j.ic.2014.10.005},
376
	doi       = {10.1016/j.ic.2014.10.005},
377
	timestamp = {Sat, 25 Apr 2015 11:14:59 +0200},
378
	biburl    = {http://dblp.uni-trier.de/rec/bib/journals/iandc/Baillot15},
379
	bibsource = {dblp computer science bibliography, http://dblp.org}
380
}
381

  
382
@inproceedings{BaiDas16,
383
	author    = {Patrick Baillot and
384
	Anupam Das},
385
	title     = {Free-Cut Elimination in Linear Logic and an Application to a Feasible
386
	Arithmetic},
387
	booktitle = {25th {EACSL} Annual Conference on Computer Science Logic, {CSL} 2016,
388
	August 29 - September 1, 2016, Marseille, France},
389
	pages     = {40:1--40:18},
390
	year      = {2016},
391
	crossref  = {DBLP:conf/csl/2016},
392
	url       = {http://dx.doi.org/10.4230/LIPIcs.CSL.2016.40},
393
	doi       = {10.4230/LIPIcs.CSL.2016.40},
394
	timestamp = {Tue, 30 Aug 2016 15:55:10 +0200},
395
	biburl    = {http://dblp.uni-trier.de/rec/bib/conf/csl/BaillotD16},
396
	bibsource = {dblp computer science bibliography, http://dblp.org}
397
}
398

  
399

  
400

  
401

  
402

  
403
@book{Krajicek:1996:BAP:225488,
404
	author = {Kraj\'{\i}\v{c}ek, Jan},
405
	title = {Bounded arithmetic, propositional logic, and complexity theory},
406
	year = {1995},
407
	isbn = {0-521-45205-8},
408
	publisher = {Cambridge University Press},
409
	address = {New York, NY, USA},
410
} 
411

  
412

  
413
@incollection{CloTak:1995:nc-ac,
414
	title={First order bounded arithmetic and small boolean circuit complexity classes},
415
	author={Clote, Peter and Takeuti, Gaisi},
416
	booktitle={Feasible Mathematics II},
417
	pages={154--218},
418
	year={1995},
419
	publisher={Springer}
420
}
421

  
422

  
423
@article{Strahm03,
424
  author    = {Thomas Strahm},
425
  title     = {Theories with self-application and computational complexity},
426
  journal   = {Inf. Comput.},
427
  volume    = {185},
428
  number    = {2},
429
  pages     = {263--297},
430
  year      = {2003},
431
  url       = {http://dx.doi.org/10.1016/S0890-5401(03)00086-5},
432
  doi       = {10.1016/S0890-5401(03)00086-5},
433
  timestamp = {Thu, 20 Nov 2003 12:03:25 +0100},
434
  biburl    = {http://dblp.uni-trier.de/rec/bib/journals/iandc/Strahm03},
435
  bibsource = {dblp computer science bibliography, http://dblp.org}
436
}
437
@article{Zambella96,
438
	author    = {Domenico Zambella},
439
	title     = {Notes on Polynomially Bounded Arithmetic},
440
	journal   = {J. Symb. Log.},
441
	volume    = {61},
442
	number    = {3},
443
	pages     = {942--966},
444
	year      = {1996},
445
	url       = {http://dx.doi.org/10.2307/2275794},
446
	doi       = {10.2307/2275794},
447
	timestamp = {Tue, 05 Aug 2014 16:36:22 +0200},
448
	biburl    = {http://dblp.uni-trier.de/rec/bib/journals/jsyml/Zambella96},
449
	bibsource = {dblp computer science bibliography, http://dblp.org}
450
}
451

  
452

  
453
@article{KahOit:13:ph-levels,
454
	author    = {Reinhard Kahle and
455
	Isabel Oitavem},
456
	title     = {Applicative theories for the polynomial hierarchy of time and its
457
	levels},
458
	journal   = {Ann. Pure Appl. Logic},
459
	volume    = {164},
460
	number    = {6},
461
	pages     = {663--675},
462
	year      = {2013},
463
	url       = {http://dx.doi.org/10.1016/j.apal.2012.05.006},
464
	doi       = {10.1016/j.apal.2012.05.006},
465
	timestamp = {Sat, 20 Apr 2013 19:07:47 +0200},
466
	biburl    = {http://dblp.uni-trier.de/rec/bib/journals/apal/KahleO13},
467
	bibsource = {dblp computer science bibliography, http://dblp.org}
468
}
469

  
470

  
471
@article{Buss:95:wfm-arith,
472
	title={The witness function method and provably recursive functions of Peano arithmetic},
473
	author={Buss, Samuel R},
474
	journal={Studies in Logic and the Foundations of Mathematics},
475
	volume={134},
476
	pages={29--68},
477
	year={1995},
478
	publisher={Elsevier}
479
}
480

  
481

  
482

  
483
	@article{troelstra1998realizability,
484
		title={Realizability},
485
		author={Troelstra, Anne Sjerp},
486
		journal={Handbook of Proof Theory},
487
		year={1998},
488
		publisher={North-Holland/Elsevier}
489
	}
490
	@article{avigad1998godel,
491
		title={G{\"o}del’s functional (“{D}ialectica”) interpretation},
492
		author={Avigad, Jeremy},
493
		journal={Handbook of Proof Theory},
494
		volume={137},
495
		year={1998}
496
	}
497

  
498

  
499

  
500

  
CSL17/preliminaries.tex (revision 156)
6 6
(include closure properties)
7 7

  
8 8
\subsection{Bellantoni's characterisation using predicative minimisation}
9
(perhaps compare with Cobham's using limited recursion)
9
(perhaps compare with Cobham's using limited recursion)
10

  
11
\anupam{copied below from last year's paper}
12

  
13
We recall the Bellantoni-Cook  algebra BC of functions defined by \emph{safe} (or \emph{predicative}) recursion on notation \cite{BellantoniCook92}. These will be employed for proving both the completeness   (all polynomial time functions are provably convergent) and the soundness result (all provably total functions are polynomial time) of THEORY. We consider function symbols $f$ over the domain  $\Word$ with sorted arguments $(\vec u ; \vec x)$, where the inputs $\vec u$ are called \textit{normal} and $\vec x$ are called \textit{safe}. 
14
%Each symbol is given with an arity $m$ and a number $n\leq m$ of normal arguments, and will be denoted as $f(\vec{u};\vec{x})$ where $\vec{u}$ (resp. $\vec{x}$) are the normal (resp. safe) arguments.
15
%We say that an expression is well-sorted if the arities of function symbols in it is respected.
16

  
17
%\patrick{Note that below I used the terminology 'BC programs', to distinguish them from 'functions' in the extensional sense, which I find clearer. But if you prefer to keep 'BC functions' it is all right for me.}
18
\begin{definition}
19
	[BC programs]
20
	BC is the set of functions generated as follows:
21
	%	\paragraph{Initial functions}
22
	%	The initial functions are:
23
	\begin{enumerate}
24
		\item The constant functions $\epsilon^k$ which takes $k$ arguments and outputs $\epsilon \in \Word$.
25
		\item The projection functions $\pi^{m,n}_k ( x_1 , \dots , x_m ; x_{m+1} , \dots, x_{m+n} )  := x_k$ for $n,m \in \Word$ and $1 \leq k \leq m+n$.
26
		\item The successor functions $\succ_i ( ; x) := xi$ for $i = 0,1$.
27
		\item The predecessor function $\pred (; x) := \begin{cases}
28
		\epsilon &  \mbox{ if }  x = \epsilon \\
29
		x' &  \mbox{ if }  x = x'i
30
		\end{cases}$.
31
		\item The conditional function 
32
		\[
33
		%\begin{array}{rcl}
34
		%C (; \epsilon, y_\epsilon , y_0, y_1  ) & = & y_\epsilon \\
35
		%C(; x0 , y_\epsilon , y_0, y_1) & = & y_0 \\
36
		%C(; x1 , y_\epsilon , y_0, y_1) & = & y_1 
37
		%\end{array}
38
		C (; \epsilon, y_\epsilon , y_0, y_1  ) := y_\epsilon 
39
		\quad
40
		C(; x0 , y_\epsilon , y_0, y_1) := y_0 
41
		\quad
42
		C(; x1 , y_\epsilon , y_0, y_1) := y_1 
43
		\]
44
		%		$\cond (;x,y,z) := \begin{cases}
45
		%		y & \mbox{ if } x=x' 0 \\
46
		%		z & \text{otherwise}
47
		%		\end{cases}$.
48
	\end{enumerate}
49
	
50
	%	One considers the following closure schemes:
51
	\begin{enumerate}
52
		\setcounter{enumi}{5}
53
		\item Predicative recursion on notation (PRN). If $g, h_0, h_1 $ are in BC then so is $f$ defined by,
54
		\[
55
		\begin{array}{rcl}
56
		f(0, \vec v ; \vec x) & := & g(\vec v ; \vec x) \\
57
		f (\succ_i u , \vec v ; \vec x ) & := & h_i ( u , \vec v ; \vec x , f (u , \vec v ; \vec x) )
58
		\end{array}
59
		\]
60
		for $i = 0,1$,  so long as the expressions are well-formed. % (i.e.\ in number/sort of arguments).
61
		\item Safe composition. If $g, \vec h, \vec h'$ are in BC then so is $f$ defined by,
62
		\[
63
		f (\vec u ; \vec x) \quad := \quad g ( \vec h(\vec u ; ) ; \vec h' (\vec u ; \vec x) )
64
		\]
65
		so long as the expression is well-formed.
66
	\end{enumerate}
67
\end{definition}
68
%Note that the  programs of this class can be defined by equational specifications in a natural way, and in the following we will thus silently identify a BC program with the corresponding equational specification.
69

  
70
We will implicitly identify a BC function with the equational specification it induces.
71
The main property of BC programs is:
72
\begin{theorem}[\cite{BellantoniCook92}]
73
	The class of functions representable by BC programs is $\fptime$.
74
\end{theorem}	
75
Actually this property remains true if one replaces the PRN scheme by the following more general simultaneous PRN scheme \cite{BellantoniThesis}:
76

  
77
$(f^j)_{1\leq j\leq n}$ are defined by simultaneous PRN scheme  from $(g^j)_{1\leq j\leq n}$, $(h^j_0, h^j_1)_{1\leq j\leq n}$ if for $1\leq j\leq n$ we have:
78
\[
79
\begin{array}{rcl}
80
f^j(0, \vec v ; \vec x) & := & g^j(\vec v ; \vec x) \\
81
f^j(\succ_i u , \vec v ; \vec x ) & := & h^j_i ( u , \vec v ; \vec x , \vec{f} (u , \vec v ; \vec x) )
82
\end{array}
83
\]
84
for $i = 0,1$,  so long as the expressions are well-formed.
85

  
86
%\anupam{simultaneous recursion?}
87

  
88
%\anupam{also identity, hereditarily safe, expressions, etc.}
89

  
90
%\anupam{we implicitly associate a BC program with its equational specification} 
91

  
92
Consider a well-formed expression $t$ built from function symbols and variables. We say that a variable $y$ occurs \textit{hereditarily safe} in $t$ if, for every subexpression $f(\vec{r}; \vec{s})$ of $t$, the terms in $\vec{r}$ do not contain $y$.
93
For instance $y$ occurs hereditarily safe in $f(u;y,g(v;y))$, but not in $f(g(v;y);x)$.
94
\begin{proposition}
95
	[Properties of BC programs]
96
	\label{prop:bc-properties}
97
	We have the following properties:
98
	\begin{enumerate}
99
		\item The identity function is in BC.
100
		\item Let $t$ be a well-formed expression built from BC functions and variables, denote its free variables as $\{u_1,\dots, u_n,x_1,\dots, x_k\}$, and assume for each $1\leq i\leq k$, $x_i$ is hereditarily safe in $t$. Then the function $f(u_1,\dots, u_n; x_1,\dots, x_k):=t$ is in BC.
101
		\item If $f$ is a BC function, then the function $g(\vec{u},v;\vec{x})$ defined as $f(\vec{u};v,\vec{x})$
102
		is also a BC program.
103
	\end{enumerate}
104
	
105
	%\begin{proposition}
106
	%[Properties of BC programs]
107
	%\label{prop:bc-properties}
108
	%We have the following properties:
109
	%\begin{enumerate}
110
	%\item Hereditarily safe expressions over BC programs are BC definable.
111
	%\item Can pass safe input to normal input.
112
	%\end{enumerate}
113
\end{proposition}
114

  
115
\nb{TODO: extend with $\mu$s.}
CSL17/main.tex (revision 156)
6 6
% for section-numbered lemmas etc., use "numberwithinsect"
7 7
 
8 8
\usepackage{microtype}%if unwanted, comment out or use option "draft"
9
\usepackage[dvipsnames]{xcolor}
9 10

  
10 11
%\graphicspath{{./graphics/}}%helpful if your graphic files are in another directory
11 12

  
CSL17/pv-theories.tex (revision 156)
1 1
\section{An extension of Bellantoni's theory PV for PH}
2 2

  
3
PVBC+FCA+ safe induction characterises PH
3
PVBC+FCA+ safe induction characterises PHcd
4 4

  
5
\begin{definition}
6
[Axioms]
7
The \emph{functional comprehension} schema is the following:
8
\[
9
\exists f . \forall \vec u; \vec x . ( \exists y^\safe . A(\vec u ; \vec x , y) \ciff A(\vec u ; \vec x , f(\vec u ; \vec x) )
10
\]
11
(can parametrise by which $A$ permitted)
12

  
13
The \emph{recursion} schema is:
14
\[
15
\forall g , h_0 , h_1 . \exists f . \forall u , \vec u ; \vec x .
16
\left(
17
\begin{array}{rl}
18
& f(0 , \vec u ; \vec x) = g(\vec u ; \vec x) \\
19
\cand & f(\succ 0 u , \vec u ; \vec x) = h_0 (u , \vec u ; \vec x , f(u , \vec u ; \vec x)) \\
20
\cand & f(\succ 1 u , \vec u ; \vec x) = h_1 (u , \vec u ; \vec x , f(u , \vec u ; \vec x)) 
21
\end{array}
22
\right)
23
\]
24
(should be well typed. Cannot avoid due to sequentiality problem.)
25
\end{definition}
26

  
27
\anupam{Original PV has explicit recursion symbols. Also, Krajicek's PVi has explicit symbols for the characteristic functions of each $\Sigma^b_i$ predicate.}
28

  
29
\subsection{Soundness}
30
We show that provably total functions of $\pvbci i$ are in $\fphi i$.
31

  
32
The following is our main result:
33
\begin{theorem}
34
	If $\pvbci i \proves \forall \vec u^\normal , \vec x^\sigma . \exists \vec y^\sigma. A(\vec u , \vec x , \vec y)$, then there are $\mubci i $ programs $\vec f (\vec u ; \vec x)$ such that $\pvbci i \proves\forall \vec u^\normal , \vec x^\sigma . A(\vec u , \vec x , \vec f (\vec u ; \vec x) )  $.
35
\end{theorem}
36

  
37
\begin{definition}
38
	[Witness predicate]
39
	The \emph{witness predicate} is a $\mubci{}$ program $\wit{\vec a}{A}$, parametrised by variables $\vec a$ and a formula $A$ whose free variables are amongst $\vec a$, defined as follows.
40
	If $A$ is a $\Pi_{i}$ formula then:
41
	\[
42
	\begin{array}{rcl}
43
	\wit{\vec u; \vec x}{s=t} (\vec u ; \vec x, w) & \dfn & =(;s,t) \\
44
	\smallskip
45
	\wit{\vec u; \vec x}{s\neq t} (\vec u ; \vec x, w) & \dfn & \neg (;=(;s,t)) \\
46
	\smallskip
47
	\wit{\vec u ; \vec x}{A\cor B} (\vec u ; \vec x , w) & \dfn & \cor (; \wit{\vec u , \vec x}{A} (\vec u ; \vec x , w), \wit{\vec u , \vec x}{B} (\vec u ;\vec x, w) ) \\
48
	\smallskip
49
	\wit{\vec u ; \vec x}{A\cand B} (\vec u ; \vec x , w) & \dfn & \cand(; \wit{\vec u , \vec x}{A} (\vec u ; \vec x , w), \wit{\vec u , \vec x}{B} (\vec u ;\vec x, w) ) \\
50
	\smallskip
51
	\wit{\vec u ; \vec x}{\exists x^\safe . A(x)} (\vec u ;\vec x,  w) & \dfn & \begin{cases}
52
	1 & \exists x^\safe . \wit{\vec u; \vec x, x }{A(x)} (\vec u ;\vec x , x, w) = 1 \\
53
	0 & \text{otherwise} 
54
	\end{cases} \\
55
	\smallskip
56
	\wit{\vec u; \vec x}{\forall x^\safe . A(x)} (\vec u ;\vec x , w) & \dfn & 
57
	\begin{cases}
58
	0 & \exists x^\sigma. \wit{\vec u ; \vec x , x}{ A(x)} (\vec u; \vec x , x) = 0 \\
59
	1 & \text{otherwise}
60
	\end{cases}
61
	\end{array}
62
	\]
63
	We now define $\Wit{\vec a}{A}$ for a $\Sigma_{i+1}$-formula $A$ with free variables amongst $\vec a$.
64
	\[
65
	\begin{array}{rcl}
66
	\Wit{\vec u ; \vec x}{A} (\vec u ; \vec x , w) & \dfn & \wit{\vec u ; \vec x}{A} (\vec u ; \vec x)  \text{ if $A$ is $\Pi_i$} \\
67
	\smallskip
68
	\Wit{\vec u ; \vec x}{A \cor B} (\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cor ( ; \Wit{\vec u ; \vec x}{A} (\vec u ; \vec x , \vec w^A) ,\Wit{\vec u ; \vec x}{B} (\vec u ; \vec x , \vec w^B)  )  \\
69
	\smallskip
70
	\Wit{\vec u ; \vec x}{A \cand B} (\vec u ; \vec x , \vec w^A , \vec w^B) & \dfn & \cand ( ; \Wit{\vec u ; \vec x}{A} (\vec u ; \vec x , \vec w^A) ,\Wit{\vec u ; \vec x}{B} (\vec u ; \vec x , \vec w^B)  )  \\
71
	\smallskip
72
	\Wit{\vec u ; \vec x}{\exists x^\safe . A(x)} (\vec u ; \vec x , \vec w , w) & \dfn & \Wit{\vec u ; \vec x , x}{A(x)} ( \vec u ; \vec x , w , \vec w )
73
	\end{array}
74
	\]
75
	
76
	
77
\end{definition}
78

  
79
\nb{use (de)pairing to make sure only $i$ $\mu$s are used to express a $\Pi_i$ predicate.}
80

  
81
\begin{proposition}
82
	For $\Sigma_{i+1}$ formulae $A$, $\Wit{\vec u ; \vec x}{A}$ is a $\mubci{i} $ program.
83
\end{proposition}
84

  
85
\nb{In fact, need that $\wit{}{}$ is $\mubci{i}$ and $\Wit{}{}$ and the witness functions $\vec f$ are $\bc (\wit{}{})$}
86

  
87
Before proving the main theorem, we will need the following `witnessing lemma':
88

  
89
\begin{lemma}
90
	If $\pvbci{i+1} $ proves a $\Sigma^\safe_{i+1}$-sequent $\Gamma \seqar \Delta$ with free variables $\vec u^\normal , \vec x^\safe$ then there are $\mubci {i}$ functions $\vec f$ such that 
91
	\[
92
	\pvbci {i+1} \proves \Wit{\vec u , \vec x}{\bigwedge \Gamma} (\vec u ; \vec x , \vec w) \cimp \Wit{\vec u  , \vec x}{\bigvee \Delta } (\vec u ; \vec x, \vec f (\vec u ; \vec x , \vec w) )
93
	\]
94
	(we simply write $\Wit{\vec u ; \vec x}{A}(\vec u ; \vec x , \vec w)$, instead of $\Wit{\vec u ; \vec x}{A}(\vec u ; \vec x , \vec w) =1 $.
95
\end{lemma}
96
\begin{proof}
97
	By induction on the size of a $\pvbci{i+1} $ proof. 
98
	Interesting steps below:
99
	\begin{itemize}
100
		\item $\neg$-right. (Can assume only applies to atomic formulae, and so no effect.)
101
		\item $\exists$-right.
102
		\[
103
		\dfrac{\Gamma \seqar \Delta , A(t^\safe )}{ \Gamma \seqar \Delta, \exists x^\safe . A(x) }
104
		\]
105
		By the inductive hypothesis, have functions $\vec f(\vec u ; \vec x), \vec g (\vec u ; \vec x)$ such that,
106
		\[
107
		\pvbci{i+1} \proves 
108
		\Wit{\vec u ; \vec x}{\bigwedge \Gamma } (\vec u ; \vec x , \vec w)
109
		\cimp
110
		\left(
111
		\Wit{\vec u ; \vec x}{\bigvee \Delta} (\vec u ; \vec x , \vec f (\vec u ; \vec x , \vec w) )
112
		\cor
113
		\Wit{\vec u ; \vec x}{A(t)} (\vec u ; \vec x , \vec g (\vec u ; \vec x , \vec w))
114
		\right)
115
		\]
116
		(just use $t$ as one of the witness functions)
117
		\item $\forall$-right. (Must be a $\Pi_i$ formula, so forget witness and compute $\wit{}{}$)
118
		\item Contraction-right:
119
		\[
120
		\dfrac{\Gamma  \seqar \Delta , A ,A}{\Gamma \seqar \Delta, A}
121
		\]
122
		By infuctive hypothesis have functions $\vec f, \vec g^1 , \vec g^2$ such that:
123
		\[
124
		todo
125
		\]
126
		(just use conditional with a call to $\Wit{}{}$)
127
		\item induction
128
		\[
129
		\dfrac{\{\Gamma , A(a) \seqar A(s_i a) , \Delta\}_{i=0,1} }{\Gamma, A(0) \seqar A(t) , \Delta}
130
		\]
131
	\end{itemize}
132
\end{proof}
133

  
134
\subsection{Completeness}
135
Here we show that every $\mubci{i}$ function is definable in $\pvbci {i+1}$.
136

  
137

  
138
\nb{WoP known as `minimization' principles in bounded arithmetic}
139
\begin{theorem}
140
	[Well ordering property]
141
	\[
142
	\pvbci{i+1} \proves \exists x^\safe . A(x) \cimp \exists  x^\safe . (A(x) \cand \forall y^\safe . (A(y) \cimp x \leq y ) )
143
	\]
144
\end{theorem}
145
\begin{proof}
146
	We work in $\pvbci{i+1}$ and show the contrapositive. 
147
	Suppose:
148
	\begin{equation}
149
	\label{eqn:no-least}
150
	\forall x^\safe. (A(x) \cimp \exists y^\safe . A(y) \cand y<x )
151
	\end{equation}
152
	We show that,
153
	\begin{equation}
154
	\label{eqn:ih-wop}
155
	\forall x. \forall y \leq a - x. (\cnot A(y) \cimp \cnot A(y + x))
156
	\end{equation}
157
	by polynomial induction on $x$.
158
	
159
	Let $B(x)$ be such that \eqref{eqn:ih-wop} is $\forall x . B(x)$.
160
	\nb{If $A \in \Sigma^\safe_i \cup \Pi^\safe_i$ then $B \in \Pi^\safe_{i+1}$.}
161
	
162
	When $x=0$, notice that \eqref{eqn:ih-wop} is just a generalised identity.
163
	
164
	Suppose that $B(x)$ and let us show that $B(2x)$.
165
	Let $y \leq a - 2x$ such that $\cnot A(y)$. 
166
	Then $y\leq a-x$ so by $B(x)$ we have that $\cnot A(y+x)$.
167
	We also have that $y+x \leq a-x$ so by $B(x)$ we have that $\cnot A(y+2x)$, as required.
168
	
169
	Now suppose that $B(x)$ and let us show that $B(2x+1)$.
170
	Let $y \leq a - 2x - 1$ such that $\cnot A(y)$.
171
	By similar reasoning to the $2x$ case, we have that $\cnot A(y + 2x )$.
172
\end{proof}
173

  
174

  
175
\subsection{What we want for WoP}
176
From bounded arithmetic:
177

  
178
$\Sigma_{i+1}$-LMIN $ \iff$ $\Sigma_{i+1}$-PIND $\implies$ $\Sigma_i$-IND $\iff$ $\Sigma_i$-MIN $ \iff$ $\Pi_{i+1}$-MIN.
179

  
180
\subsection{Completeness proof idea}
181
For each $\mubci i$ function $f(\vec u ; \vec x)$ we $\Sigma_i$-define a formula $A_f (\vec u ; \vec x  , y )$ in $\pvbci{i+1}$ such that:
182
\[
183
\proves A_f (\vec u ; \vec x , y)
184
\quad 
185
\iff
186
\quad
187
f(\vec u ; \vec x) = y
188
\]
189
and $A_f$ is provably total in $\pvbci{i+1}$.
190

  
191
For the $\mu$ case, say we have the function:
192
\[
193
\mu x^{+1} . f(\vec u ; \vec x , x) =_2 0
194
\]
195
Let $A_f (\vec u ; \vec x , y)$ be given by the inductive hypothesis.
196
We define $A(\vec u ; \vec x , z)$ as:
197
\[
198
\begin{array}{rl}
199
&\left(
200
z=0 \  \cand \ \forall x^\safe , y^\safe . (A_f (\vec u ; \vec x , x, y) \cimp y=_2 1)
201
\right) \\
202
\cor & \left(
203
\begin{array}{ll}
204
z\neq 0 
205
& \cand\   \forall y^\safe . (A_f (\vec u ; \vec x , z , y) \cimp y=_2 0 ) \\
206
& \cand\ \forall x^\safe < p(;z) . (\forall y^\safe . A_f (\vec u ; \vec x , x , y) \cimp y=_2 1) 
207
\end{array}
208
\right)
209
\end{array}
210
\]
211
Notice that $A$ is $\Pi_k$, since $A_f$ is $\Sigma_k$.
212

  
213

  
214

  
215
What about, say recursion on a formula? Need a form of `ranked comprehension'?
216
E.g., when $A$ is $\Sigma_k$ then we can introduce a rank $k$ symbol (a sort?) such that:
217
\[
218
\forall \vec u^\normal, \vec x^\safe . \exists ! y^\safe . A(\vec u ; \vec x , y)
219
\implies
220
\exists f^\safe_r . \forall \vec u^\normal,\vec x^\safe, y^\safe . (A(\vec u ; \vec x, y) \ciff f^\safe_r (\vec u ; \vec x) = y )
221
\]
222

  
223
Otherwise, can we use definability of computations? E.g., if:
224
\[
225
\begin{array}{rcl}
226
f(0, \vec u ; \vec x ) & \dfn & g(\vec u ; \vec x) \\
227
f(s_i u , \vec u ; \vec x) & \dfn & h_i (u , \vec u ; \vec x , f(u,\vec u ; \vec x))
228
\end{array}
229
\]
230
Suppose we have $A_g (\vec u ; \vec x,y)$ and $A_i (u , \vec u ; \vec x , y , z)$ defining $g$ and $h_i$ respectively.
231
We define $A_f (u ,\vec u ; \vec x , y)$ as:
232
\[
233
\exists z^\safe . \left(
234
\begin{array}{ll}
235
& Seq(z) \cand \exists y_0 . ( A_g (\vec u ; \vec x , y_0) \cand \beta_0 (z , y_0) ) \cand \beta_{|u|} ( z,y ) \\
236
\cand & \forall k < |u| . \exists y_k , y_{k+1} . ( \beta_k (z, y_i) \cand \beta_{k+1} (z, y_{k+1})  \cand A_i (u , \vec u ; \vec x , y_k , y_{k+1}) )
237
\end{array}
238
\right)
239
\]
240

  
241
(Can we really assume $z$ is safe here?)
242

  
243

  
244
POINT: for whatever formulation, we need to prove:
245
\[
246
\exists y^\safe . A_f (a , \vec u ; \vec x , y) 
247
\quad \seqar \quad
248
\exists y^\safe . A_f (s_i a, \vec u ; \vec x , y)
249
\]
250

  
251
SHOULD HAVE: $\beta (i;x)$ for $i$th element of sequence $x$. 
252
Therefore need 'sharply bounded' quantification for normal variables?
253

  
254
In fact, why not $\beta(;i,x) $? Should be fine. So only safe quantification is needed for PH, but lose level-by-level delineation.
255

  
256
GOALS:
257
\begin{enumerate}
258
	\item PVBC + FCA + $\safe$-IND characterises PH. (Recursion included in PVBC)
259
	\item Refinement of above with `ranks' to delineate levels (definitions of $\pvbci{i}$).
260
	\item Arithmetic including both safe and sharply bounded normal quantification. (for sequences)
261
	\item (if time) allow both bounded and safe quantifiers?
262
\end{enumerate}
263

  
264

  
265

  
266
FCA:
267
\[
268
\exists f^\safe . \forall \vec u ; \vec x .
269
\left(
270
\exists y^\safe . A(\vec u ; \vec x , y) \ciff A(\vec u ; \vec x , f^\safe(\vec u ; \vec x))
271
\right)
272
\]
273
(with typing information)
274
This could be enough with open induction if we introduce ranks later? Yup, seems like a good idea. Can then make into a real `open' theory.
275

  
5 276
\subsection{Delineating levels using function ranks}

Formats disponibles : Unified diff