Révision 150 CharacterizingPH/qpvbc.tex

qpvbc.tex (revision 150)
140 140
		\]
141 141
		(just use conditional with a call to $\Wit{}{}$)
142 142
		\item induction
143
		\[
144
		\dfrac{\{\Gamma , A(a) \seqar A(s_i a) , \Delta\}_{i=0,1} }{\Gamma, A(0) \seqar A(t) , \Delta}
145
		\]
143 146
	\end{itemize}
144 147
\end{proof}
145 148

  
146 149
\section{Completeness}
147 150
Here we show that every $\mubci{i}$ function is definable in $\pvbci {i+1}$.
148 151

  
152

  
153
\nb{WoP known as `minimization' principles in bounded arithmetic}
149 154
\begin{theorem}
150 155
	[Well ordering property]
151 156
	\[
......
153 158
	\]
154 159
\end{theorem}
155 160
\begin{proof}
156
	We work in $\pvbci{i+1}$ and show the contrapositive. Suppose $\forall x^\safe. (A(x) \cimp \exists y^\safe . A(y) \cand y<x )$.
161
	We work in $\pvbci{i+1}$ and show the contrapositive. 
162
	Suppose:
163
	\begin{equation}
164
	\label{eqn:no-least}
165
	\forall x^\safe. (A(x) \cimp \exists y^\safe . A(y) \cand y<x )
166
	\end{equation}
157 167
	We show that,
158
	\[
168
	\begin{equation}
169
	\label{eqn:ih-wop}
159 170
	\forall x. \forall y \leq a - x. (\cnot A(y) \cimp \cnot A(y + x))
160
	\]
171
	\end{equation}
161 172
	by polynomial induction on $x$.
162 173
	
163
	Let $c \leq a - 2x$ such that $\cnot A(c)$. Then $c\leq a-x$ so by the inductive hypothesis we have that TOFINISH
174
	Let $B(x)$ be such that \eqref{eqn:ih-wop} is $\forall x . B(x)$.
175
	\nb{If $A \in \Sigma^\safe_i \cup \Pi^\safe_i$ then $B \in \Pi^\safe_{i+1}$.}
176
	
177
	When $x=0$, notice that \eqref{eqn:ih-wop} is just a generalised identity.
178
	
179
	Suppose that $B(x)$ and let us show that $B(2x)$.
180
	Let $y \leq a - 2x$ such that $\cnot A(y)$. 
181
	Then $y\leq a-x$ so by $B(x)$ we have that $\cnot A(y+x)$.
182
	We also have that $y+x \leq a-x$ so by $B(x)$ we have that $\cnot A(y+2x)$, as required.
183
	
184
	Now suppose that $B(x)$ and let us show that $B(2x+1)$.
185
	Let $y \leq a - 2x - 1$ such that $\cnot A(y)$.
186
	By similar reasoning to the $2x$ case, we have that $\cnot A(y + 2x )$.
164 187
\end{proof}
165 188

  
166 189

  
190
\subsection{What we want for WoP}
191
From bounded arithmetic:
192

  
193
$\Sigma_{i+1}$-LMIN $ \iff$ $\Sigma_{i+1}$-PIND $\implies$ $\Sigma_i$-IND $\iff$ $\Sigma_i$-MIN $ \iff$ $\Pi_{i+1}$-MIN.
194

  
195
\subsection{Completeness proof idea}
196
For each $\mubci i$ function $f(\vec u ; \vec x)$ we $\Sigma_i$-define a formula $A_f (\vec u ; \vec x  , y )$ in $\pvbci{i+1}$ such that:
197
\[
198
\proves A_f (\vec u ; \vec x , y)
199
\quad 
200
\iff
201
\quad
202
f(\vec u ; \vec x) = y
203
\]
204
and $A_f$ is provably total in $\pvbci{i+1}$.
205

  
206
For the $\mu$ case, say we have the function:
207
\[
208
\mu x^{+1} . f(\vec u ; \vec x , x) =_2 0
209
\]
210
Let $A_f (\vec u ; \vec x , y)$ be given by the inductive hypothesis.
211
We define $A(\vec u ; \vec x , z)$ as:
212
\[
213
\begin{array}{rl}
214
&\left(
215
z=0 \  \cand \ \forall x^\safe , y^\safe . (A_f (\vec u ; \vec x , x, y) \cimp y=_2 1)
216
\right) \\
217
\cor & \left(
218
\begin{array}{ll}
219
z\neq 0 
220
& \cand\   \forall y^\safe . (A_f (\vec u ; \vec x , z , y) \cimp y=_2 0 ) \\
221
& \cand\ \forall x^\safe < p(;z) . (\forall y^\safe . A_f (\vec u ; \vec x , x , y) \cimp y=_2 1) 
222
\end{array}
223
\right)
224
\end{array}
225
\]
226
Notice that $A$ is $\Pi_k$, since $A_f$ is $\Sigma_k$.
227

  
228

  
229

  
230
What about, say recursion on a formula? Need a form of `ranked comprehension'?
231
E.g., when $A$ is $\Sigma_k$ then we can introduce a rank $k$ symbol (a sort?) such that:
232
\[
233
\forall \vec u^\normal, \vec x^\safe . \exists ! y^\safe . A(\vec u ; \vec x , y)
234
\implies
235
\exists f^\safe_r . \forall \vec u^\normal,\vec x^\safe, y^\safe . (A(\vec u ; \vec x, y) \ciff f^\safe_r (\vec u ; \vec x) = y )
236
\]
237

  
238
Otherwise, can we use definability of computations? E.g., if:
239
\[
240
\begin{array}{rcl}
241
f(0, \vec u ; \vec x ) & \dfn & g(\vec u ; \vec x) \\
242
f(s_i u , \vec u ; \vec x) & \dfn & h_i (u , \vec u ; \vec x , f(u,\vec u ; \vec x))
243
\end{array}
244
\]
245
Suppose we have $A_g (\vec u ; \vec x,y)$ and $A_i (u , \vec u ; \vec x , y , z)$ defining $g$ and $h_i$ respectively.
246
We define $A_f (u ,\vec u ; \vec x , y)$ as:
247
\[
248
\exists z^\safe . \left(
249
\begin{array}{ll}
250
& Seq(z) \cand \exists y_0 . ( A_g (\vec u ; \vec x , y_0) \cand \beta_0 (z , y_0) ) \cand \beta_{|u|} ( z,y ) \\
251
\cand & \forall k < |u| . \exists y_k , y_{k+1} . ( \beta_k (z, y_i) \cand \beta_{k+1} (z, y_{k+1})  \cand A_i (u , \vec u ; \vec x , y_k , y_{k+1}) )
252
\end{array}
253
\right)
254
\]
255

  
256
(Can we really assume $z$ is safe here?)
257

  
258

  
259
POINT: for whatever formulation, we need to prove:
260
\[
261
\exists y^\safe . A_f (a , \vec u ; \vec x , y) 
262
\quad \seqar \quad
263
\exists y^\safe . A_f (s_i a, \vec u ; \vec x , y)
264
\]
265

  
266
SHOULD HAVE: $\beta (i;x)$ for $i$th element of sequence $x$. (In fact, why not $\beta(;i,x) $?)
267
Therefore need 'sharply bounded' quantification for normal variables?
268

  
269

  
270
GOALS:
271
\begin{enumerate}
272
	\item PVBC + FCA + $\safe$-IND characterises PH. (Recursion included in PVBC)
273
	\item Refinement of above with `ranks' to delineate levels (definitions of $\pvbci{i}$).
274
	\item Arithmetic including both safe and sharply bounded normal quantification. (for sequences)
275
	\item (if time) allow both bounded and safe quantifiers?
276
\end{enumerate}
167 277
\end{document}

Formats disponibles : Unified diff