Révision 150 CharacterizingPH/qpvbc.tex
qpvbc.tex (revision 150) | ||
---|---|---|
140 | 140 |
\] |
141 | 141 |
(just use conditional with a call to $\Wit{}{}$) |
142 | 142 |
\item induction |
143 |
\[ |
|
144 |
\dfrac{\{\Gamma , A(a) \seqar A(s_i a) , \Delta\}_{i=0,1} }{\Gamma, A(0) \seqar A(t) , \Delta} |
|
145 |
\] |
|
143 | 146 |
\end{itemize} |
144 | 147 |
\end{proof} |
145 | 148 |
|
146 | 149 |
\section{Completeness} |
147 | 150 |
Here we show that every $\mubci{i}$ function is definable in $\pvbci {i+1}$. |
148 | 151 |
|
152 |
|
|
153 |
\nb{WoP known as `minimization' principles in bounded arithmetic} |
|
149 | 154 |
\begin{theorem} |
150 | 155 |
[Well ordering property] |
151 | 156 |
\[ |
... | ... | |
153 | 158 |
\] |
154 | 159 |
\end{theorem} |
155 | 160 |
\begin{proof} |
156 |
We work in $\pvbci{i+1}$ and show the contrapositive. Suppose $\forall x^\safe. (A(x) \cimp \exists y^\safe . A(y) \cand y<x )$. |
|
161 |
We work in $\pvbci{i+1}$ and show the contrapositive. |
|
162 |
Suppose: |
|
163 |
\begin{equation} |
|
164 |
\label{eqn:no-least} |
|
165 |
\forall x^\safe. (A(x) \cimp \exists y^\safe . A(y) \cand y<x ) |
|
166 |
\end{equation} |
|
157 | 167 |
We show that, |
158 |
\[ |
|
168 |
\begin{equation} |
|
169 |
\label{eqn:ih-wop} |
|
159 | 170 |
\forall x. \forall y \leq a - x. (\cnot A(y) \cimp \cnot A(y + x)) |
160 |
\]
|
|
171 |
\end{equation}
|
|
161 | 172 |
by polynomial induction on $x$. |
162 | 173 |
|
163 |
Let $c \leq a - 2x$ such that $\cnot A(c)$. Then $c\leq a-x$ so by the inductive hypothesis we have that TOFINISH |
|
174 |
Let $B(x)$ be such that \eqref{eqn:ih-wop} is $\forall x . B(x)$. |
|
175 |
\nb{If $A \in \Sigma^\safe_i \cup \Pi^\safe_i$ then $B \in \Pi^\safe_{i+1}$.} |
|
176 |
|
|
177 |
When $x=0$, notice that \eqref{eqn:ih-wop} is just a generalised identity. |
|
178 |
|
|
179 |
Suppose that $B(x)$ and let us show that $B(2x)$. |
|
180 |
Let $y \leq a - 2x$ such that $\cnot A(y)$. |
|
181 |
Then $y\leq a-x$ so by $B(x)$ we have that $\cnot A(y+x)$. |
|
182 |
We also have that $y+x \leq a-x$ so by $B(x)$ we have that $\cnot A(y+2x)$, as required. |
|
183 |
|
|
184 |
Now suppose that $B(x)$ and let us show that $B(2x+1)$. |
|
185 |
Let $y \leq a - 2x - 1$ such that $\cnot A(y)$. |
|
186 |
By similar reasoning to the $2x$ case, we have that $\cnot A(y + 2x )$. |
|
164 | 187 |
\end{proof} |
165 | 188 |
|
166 | 189 |
|
190 |
\subsection{What we want for WoP} |
|
191 |
From bounded arithmetic: |
|
192 |
|
|
193 |
$\Sigma_{i+1}$-LMIN $ \iff$ $\Sigma_{i+1}$-PIND $\implies$ $\Sigma_i$-IND $\iff$ $\Sigma_i$-MIN $ \iff$ $\Pi_{i+1}$-MIN. |
|
194 |
|
|
195 |
\subsection{Completeness proof idea} |
|
196 |
For each $\mubci i$ function $f(\vec u ; \vec x)$ we $\Sigma_i$-define a formula $A_f (\vec u ; \vec x , y )$ in $\pvbci{i+1}$ such that: |
|
197 |
\[ |
|
198 |
\proves A_f (\vec u ; \vec x , y) |
|
199 |
\quad |
|
200 |
\iff |
|
201 |
\quad |
|
202 |
f(\vec u ; \vec x) = y |
|
203 |
\] |
|
204 |
and $A_f$ is provably total in $\pvbci{i+1}$. |
|
205 |
|
|
206 |
For the $\mu$ case, say we have the function: |
|
207 |
\[ |
|
208 |
\mu x^{+1} . f(\vec u ; \vec x , x) =_2 0 |
|
209 |
\] |
|
210 |
Let $A_f (\vec u ; \vec x , y)$ be given by the inductive hypothesis. |
|
211 |
We define $A(\vec u ; \vec x , z)$ as: |
|
212 |
\[ |
|
213 |
\begin{array}{rl} |
|
214 |
&\left( |
|
215 |
z=0 \ \cand \ \forall x^\safe , y^\safe . (A_f (\vec u ; \vec x , x, y) \cimp y=_2 1) |
|
216 |
\right) \\ |
|
217 |
\cor & \left( |
|
218 |
\begin{array}{ll} |
|
219 |
z\neq 0 |
|
220 |
& \cand\ \forall y^\safe . (A_f (\vec u ; \vec x , z , y) \cimp y=_2 0 ) \\ |
|
221 |
& \cand\ \forall x^\safe < p(;z) . (\forall y^\safe . A_f (\vec u ; \vec x , x , y) \cimp y=_2 1) |
|
222 |
\end{array} |
|
223 |
\right) |
|
224 |
\end{array} |
|
225 |
\] |
|
226 |
Notice that $A$ is $\Pi_k$, since $A_f$ is $\Sigma_k$. |
|
227 |
|
|
228 |
|
|
229 |
|
|
230 |
What about, say recursion on a formula? Need a form of `ranked comprehension'? |
|
231 |
E.g., when $A$ is $\Sigma_k$ then we can introduce a rank $k$ symbol (a sort?) such that: |
|
232 |
\[ |
|
233 |
\forall \vec u^\normal, \vec x^\safe . \exists ! y^\safe . A(\vec u ; \vec x , y) |
|
234 |
\implies |
|
235 |
\exists f^\safe_r . \forall \vec u^\normal,\vec x^\safe, y^\safe . (A(\vec u ; \vec x, y) \ciff f^\safe_r (\vec u ; \vec x) = y ) |
|
236 |
\] |
|
237 |
|
|
238 |
Otherwise, can we use definability of computations? E.g., if: |
|
239 |
\[ |
|
240 |
\begin{array}{rcl} |
|
241 |
f(0, \vec u ; \vec x ) & \dfn & g(\vec u ; \vec x) \\ |
|
242 |
f(s_i u , \vec u ; \vec x) & \dfn & h_i (u , \vec u ; \vec x , f(u,\vec u ; \vec x)) |
|
243 |
\end{array} |
|
244 |
\] |
|
245 |
Suppose we have $A_g (\vec u ; \vec x,y)$ and $A_i (u , \vec u ; \vec x , y , z)$ defining $g$ and $h_i$ respectively. |
|
246 |
We define $A_f (u ,\vec u ; \vec x , y)$ as: |
|
247 |
\[ |
|
248 |
\exists z^\safe . \left( |
|
249 |
\begin{array}{ll} |
|
250 |
& Seq(z) \cand \exists y_0 . ( A_g (\vec u ; \vec x , y_0) \cand \beta_0 (z , y_0) ) \cand \beta_{|u|} ( z,y ) \\ |
|
251 |
\cand & \forall k < |u| . \exists y_k , y_{k+1} . ( \beta_k (z, y_i) \cand \beta_{k+1} (z, y_{k+1}) \cand A_i (u , \vec u ; \vec x , y_k , y_{k+1}) ) |
|
252 |
\end{array} |
|
253 |
\right) |
|
254 |
\] |
|
255 |
|
|
256 |
(Can we really assume $z$ is safe here?) |
|
257 |
|
|
258 |
|
|
259 |
POINT: for whatever formulation, we need to prove: |
|
260 |
\[ |
|
261 |
\exists y^\safe . A_f (a , \vec u ; \vec x , y) |
|
262 |
\quad \seqar \quad |
|
263 |
\exists y^\safe . A_f (s_i a, \vec u ; \vec x , y) |
|
264 |
\] |
|
265 |
|
|
266 |
SHOULD HAVE: $\beta (i;x)$ for $i$th element of sequence $x$. (In fact, why not $\beta(;i,x) $?) |
|
267 |
Therefore need 'sharply bounded' quantification for normal variables? |
|
268 |
|
|
269 |
|
|
270 |
GOALS: |
|
271 |
\begin{enumerate} |
|
272 |
\item PVBC + FCA + $\safe$-IND characterises PH. (Recursion included in PVBC) |
|
273 |
\item Refinement of above with `ranks' to delineate levels (definitions of $\pvbci{i}$). |
|
274 |
\item Arithmetic including both safe and sharply bounded normal quantification. (for sequences) |
|
275 |
\item (if time) allow both bounded and safe quantifiers? |
|
276 |
\end{enumerate} |
|
167 | 277 |
\end{document} |
Formats disponibles : Unified diff