140 |
140 |
\]
|
141 |
141 |
(just use conditional with a call to $\Wit{}{}$)
|
142 |
142 |
\item induction
|
|
143 |
\[
|
|
144 |
\dfrac{\{\Gamma , A(a) \seqar A(s_i a) , \Delta\}_{i=0,1} }{\Gamma, A(0) \seqar A(t) , \Delta}
|
|
145 |
\]
|
143 |
146 |
\end{itemize}
|
144 |
147 |
\end{proof}
|
145 |
148 |
|
146 |
149 |
\section{Completeness}
|
147 |
150 |
Here we show that every $\mubci{i}$ function is definable in $\pvbci {i+1}$.
|
148 |
151 |
|
|
152 |
|
|
153 |
\nb{WoP known as `minimization' principles in bounded arithmetic}
|
149 |
154 |
\begin{theorem}
|
150 |
155 |
[Well ordering property]
|
151 |
156 |
\[
|
... | ... | |
153 |
158 |
\]
|
154 |
159 |
\end{theorem}
|
155 |
160 |
\begin{proof}
|
156 |
|
We work in $\pvbci{i+1}$ and show the contrapositive. Suppose $\forall x^\safe. (A(x) \cimp \exists y^\safe . A(y) \cand y<x )$.
|
|
161 |
We work in $\pvbci{i+1}$ and show the contrapositive.
|
|
162 |
Suppose:
|
|
163 |
\begin{equation}
|
|
164 |
\label{eqn:no-least}
|
|
165 |
\forall x^\safe. (A(x) \cimp \exists y^\safe . A(y) \cand y<x )
|
|
166 |
\end{equation}
|
157 |
167 |
We show that,
|
158 |
|
\[
|
|
168 |
\begin{equation}
|
|
169 |
\label{eqn:ih-wop}
|
159 |
170 |
\forall x. \forall y \leq a - x. (\cnot A(y) \cimp \cnot A(y + x))
|
160 |
|
\]
|
|
171 |
\end{equation}
|
161 |
172 |
by polynomial induction on $x$.
|
162 |
173 |
|
163 |
|
Let $c \leq a - 2x$ such that $\cnot A(c)$. Then $c\leq a-x$ so by the inductive hypothesis we have that TOFINISH
|
|
174 |
Let $B(x)$ be such that \eqref{eqn:ih-wop} is $\forall x . B(x)$.
|
|
175 |
\nb{If $A \in \Sigma^\safe_i \cup \Pi^\safe_i$ then $B \in \Pi^\safe_{i+1}$.}
|
|
176 |
|
|
177 |
When $x=0$, notice that \eqref{eqn:ih-wop} is just a generalised identity.
|
|
178 |
|
|
179 |
Suppose that $B(x)$ and let us show that $B(2x)$.
|
|
180 |
Let $y \leq a - 2x$ such that $\cnot A(y)$.
|
|
181 |
Then $y\leq a-x$ so by $B(x)$ we have that $\cnot A(y+x)$.
|
|
182 |
We also have that $y+x \leq a-x$ so by $B(x)$ we have that $\cnot A(y+2x)$, as required.
|
|
183 |
|
|
184 |
Now suppose that $B(x)$ and let us show that $B(2x+1)$.
|
|
185 |
Let $y \leq a - 2x - 1$ such that $\cnot A(y)$.
|
|
186 |
By similar reasoning to the $2x$ case, we have that $\cnot A(y + 2x )$.
|
164 |
187 |
\end{proof}
|
165 |
188 |
|
166 |
189 |
|
|
190 |
\subsection{What we want for WoP}
|
|
191 |
From bounded arithmetic:
|
|
192 |
|
|
193 |
$\Sigma_{i+1}$-LMIN $ \iff$ $\Sigma_{i+1}$-PIND $\implies$ $\Sigma_i$-IND $\iff$ $\Sigma_i$-MIN $ \iff$ $\Pi_{i+1}$-MIN.
|
|
194 |
|
|
195 |
\subsection{Completeness proof idea}
|
|
196 |
For each $\mubci i$ function $f(\vec u ; \vec x)$ we $\Sigma_i$-define a formula $A_f (\vec u ; \vec x , y )$ in $\pvbci{i+1}$ such that:
|
|
197 |
\[
|
|
198 |
\proves A_f (\vec u ; \vec x , y)
|
|
199 |
\quad
|
|
200 |
\iff
|
|
201 |
\quad
|
|
202 |
f(\vec u ; \vec x) = y
|
|
203 |
\]
|
|
204 |
and $A_f$ is provably total in $\pvbci{i+1}$.
|
|
205 |
|
|
206 |
For the $\mu$ case, say we have the function:
|
|
207 |
\[
|
|
208 |
\mu x^{+1} . f(\vec u ; \vec x , x) =_2 0
|
|
209 |
\]
|
|
210 |
Let $A_f (\vec u ; \vec x , y)$ be given by the inductive hypothesis.
|
|
211 |
We define $A(\vec u ; \vec x , z)$ as:
|
|
212 |
\[
|
|
213 |
\begin{array}{rl}
|
|
214 |
&\left(
|
|
215 |
z=0 \ \cand \ \forall x^\safe , y^\safe . (A_f (\vec u ; \vec x , x, y) \cimp y=_2 1)
|
|
216 |
\right) \\
|
|
217 |
\cor & \left(
|
|
218 |
\begin{array}{ll}
|
|
219 |
z\neq 0
|
|
220 |
& \cand\ \forall y^\safe . (A_f (\vec u ; \vec x , z , y) \cimp y=_2 0 ) \\
|
|
221 |
& \cand\ \forall x^\safe < p(;z) . (\forall y^\safe . A_f (\vec u ; \vec x , x , y) \cimp y=_2 1)
|
|
222 |
\end{array}
|
|
223 |
\right)
|
|
224 |
\end{array}
|
|
225 |
\]
|
|
226 |
Notice that $A$ is $\Pi_k$, since $A_f$ is $\Sigma_k$.
|
|
227 |
|
|
228 |
|
|
229 |
|
|
230 |
What about, say recursion on a formula? Need a form of `ranked comprehension'?
|
|
231 |
E.g., when $A$ is $\Sigma_k$ then we can introduce a rank $k$ symbol (a sort?) such that:
|
|
232 |
\[
|
|
233 |
\forall \vec u^\normal, \vec x^\safe . \exists ! y^\safe . A(\vec u ; \vec x , y)
|
|
234 |
\implies
|
|
235 |
\exists f^\safe_r . \forall \vec u^\normal,\vec x^\safe, y^\safe . (A(\vec u ; \vec x, y) \ciff f^\safe_r (\vec u ; \vec x) = y )
|
|
236 |
\]
|
|
237 |
|
|
238 |
Otherwise, can we use definability of computations? E.g., if:
|
|
239 |
\[
|
|
240 |
\begin{array}{rcl}
|
|
241 |
f(0, \vec u ; \vec x ) & \dfn & g(\vec u ; \vec x) \\
|
|
242 |
f(s_i u , \vec u ; \vec x) & \dfn & h_i (u , \vec u ; \vec x , f(u,\vec u ; \vec x))
|
|
243 |
\end{array}
|
|
244 |
\]
|
|
245 |
Suppose we have $A_g (\vec u ; \vec x,y)$ and $A_i (u , \vec u ; \vec x , y , z)$ defining $g$ and $h_i$ respectively.
|
|
246 |
We define $A_f (u ,\vec u ; \vec x , y)$ as:
|
|
247 |
\[
|
|
248 |
\exists z^\safe . \left(
|
|
249 |
\begin{array}{ll}
|
|
250 |
& Seq(z) \cand \exists y_0 . ( A_g (\vec u ; \vec x , y_0) \cand \beta_0 (z , y_0) ) \cand \beta_{|u|} ( z,y ) \\
|
|
251 |
\cand & \forall k < |u| . \exists y_k , y_{k+1} . ( \beta_k (z, y_i) \cand \beta_{k+1} (z, y_{k+1}) \cand A_i (u , \vec u ; \vec x , y_k , y_{k+1}) )
|
|
252 |
\end{array}
|
|
253 |
\right)
|
|
254 |
\]
|
|
255 |
|
|
256 |
(Can we really assume $z$ is safe here?)
|
|
257 |
|
|
258 |
|
|
259 |
POINT: for whatever formulation, we need to prove:
|
|
260 |
\[
|
|
261 |
\exists y^\safe . A_f (a , \vec u ; \vec x , y)
|
|
262 |
\quad \seqar \quad
|
|
263 |
\exists y^\safe . A_f (s_i a, \vec u ; \vec x , y)
|
|
264 |
\]
|
|
265 |
|
|
266 |
SHOULD HAVE: $\beta (i;x)$ for $i$th element of sequence $x$. (In fact, why not $\beta(;i,x) $?)
|
|
267 |
Therefore need 'sharply bounded' quantification for normal variables?
|
|
268 |
|
|
269 |
|
|
270 |
GOALS:
|
|
271 |
\begin{enumerate}
|
|
272 |
\item PVBC + FCA + $\safe$-IND characterises PH. (Recursion included in PVBC)
|
|
273 |
\item Refinement of above with `ranks' to delineate levels (definitions of $\pvbci{i}$).
|
|
274 |
\item Arithmetic including both safe and sharply bounded normal quantification. (for sequences)
|
|
275 |
\item (if time) allow both bounded and safe quantifiers?
|
|
276 |
\end{enumerate}
|
167 |
277 |
\end{document}
|